Arsenic is a global threat to health, and one of the most commonly encountered contaminants in Superfund sites in the United States. Arsenic-exposed populations have been the focus of epidemiological studies that have found a diverse set of human diseases associated with arsenic exposure, including several forms of cancer, peripheral neuropathy, and severe peripheral vascular disease. A natural focus of epidemiological research has been to identify risk factors that predict the fraction of the exposed population that will contract arsenic-associated disease. Validated risk factors include the duration-weighted exposure level of arsenic, gender, nutritional status, genetic variations, and the efficiency of arsenic methylation during its metabolism. Understanding the effect and biological relevance of these risk factors has advanced the field, yet the epidemiological data suggest that there are still significant sources of disease risk that we have not yet identified. This proposal is based on the hypothesis that a key source of disease risk is individual variability in susceptibility to arsenic cytotoxicity, a phenomenon that has been observed in, as one example, limited studies of blood cells from arsenic-exposed humans. In this project we propose to utilize lymphoblastoid cell lines (LBLs) from a total of 130 individuals to characterize the individual variability in susceptibility to arsenic cytotoxicity. Genome-wide gene expression levels will be measured by RNA microarray analysis in order to identify genes whose expression levels correlate with arsenic-resistance level within this in vitro population. Candidate """"""""arsenic resistance"""""""" genes will be subject to experimental modulation of gene expression levels in order to validate their functional significance in conferring arsenic resistance. Finally, a set of functionally validated candidate genes that identify the level of arsenic susceptibility will be tested in primary blood cells sampled from individuals at high arsenic exposure compared to a corresponding group of individuals at low arsenic exposure. The long-term goal of this project is twofold: to provide mechanistic information about genes that can reduce arsenic cytotoxicity and to develop additional biomarkers of arsenic-associated disease risk, allowed more refined assessment of risk to real-world populations.

Public Health Relevance

Worldwide, many people suffer from disease caused or aggravated by exposure to arsenic in the environment. This project aims to understand why some people are particularly sensitive to the damaging effects of a level of arsenic that might not cause damage to other people. With this information we can advance our basic knowledge about how arsenic causes damage, as well as being better able to predict who, within a population of arsenic-exposed people will be at greatest risk of disease from that exposure.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004940-24
Application #
8450293
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
24
Fiscal Year
2013
Total Cost
$166,986
Indirect Cost
$71,048
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Dehghani, Mansooreh; Sorooshian, Armin; Nazmara, Shahrokh et al. (2018) Concentration and type of bioaerosols before and after conventional disinfection and sterilization procedures inside hospital operating rooms. Ecotoxicol Environ Saf 164:277-282
Keshavarzi, Behnam; Abbasi, Sajjad; Moore, Farid et al. (2018) Contamination Level, Source Identification and Risk Assessment of Potentially Toxic Elements (PTEs) and Polycyclic Aromatic Hydrocarbons (PAHs) in Street Dust of an Important Commercial Center in Iran. Environ Manage 62:803-818
Dodson, Matthew; de la Vega, Montserrat Rojo; Harder, Bryan et al. (2018) Low-level arsenic causes proteotoxic stress and not oxidative stress. Toxicol Appl Pharmacol 341:106-113
Soltani, Naghmeh; Keshavarzi, Behnam; Sorooshian, Armin et al. (2018) Oxidative potential (OP) and mineralogy of iron ore particulate matter at the Gol-E-Gohar Mining and Industrial Facility (Iran). Environ Geochem Health 40:1785-1802
Simon-Pascual, Alvaro; Sierra-Alvarez, Reyes; Ramos-Ruiz, Adriana et al. (2018) Reduction of platinum (IV) ions to elemental platinum nanoparticles by anaerobic sludge. J Chem Technol Biotechnol 93:1611-1617
Lyu, Ying; Brusseau, Mark L; Chen, Wei et al. (2018) Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media. Environ Sci Technol 52:7745-7753
Zeng, Chao; Nguyen, Chi; Boitano, Scott et al. (2018) Cerium dioxide (CeO2) nanoparticles decrease arsenite (As(III)) cytotoxicity to 16HBE14o- human bronchial epithelial cells. Environ Res 164:452-458
Zeb, Bahadar; Alam, Khan; Sorooshian, Armin et al. (2018) On the Morphology and Composition of Particulate Matter in an Urban Environment. Aerosol Air Qual Res 18:1431-1447
Khan, Muhammad Amjad; Ding, Xiaodong; Khan, Sardar et al. (2018) The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Sci Total Environ 636:810-817
Yellowhair, Monica; Romanotto, Michelle R; Stearns, Diane M et al. (2018) Uranyl acetate induced DNA single strand breaks and AP sites in Chinese hamster ovary cells. Toxicol Appl Pharmacol 349:29-38

Showing the most recent 10 out of 497 publications