The objective of our Hazard Identification Core [HIC] (Core C) is to provide state-of-the-art chemical analytical services that will be utilized by all of the Biomedical and Environmental Sciences Research Projects and by the studies that are associated with the Research Translation and Outreach Cores. The Metals Analysis Laboratory of the HIC has been providing total metal and arsenic speciation analyses for our UA SBRP research projects resulting in data for numerous publications. In this renewal we will expand the services of this Core by including the Arizona Laboratory for Emerging Contaminant (ALEC) as another analytical site. ALEC will provide additional metal speciation analyses, particle size and chemistry analyses, and organic pollutant analyses.
The Specific Aims of this Core are: 1. Metals Analysis Laboratory will provide routine total metal analysis. 2. Metal Analysis Laboratory will provide routine arsenic speciation analysis. 3. ALEC will provide analyses for solution phase speciation of selected metal(loid)s other than arsenic. 4. ALEC will provide analysis of size and chemical composition of contaminant-containing particles. 5. ALEC will provide routine and specialty analysis of organic contaminants and degradation products in environmental samples. By supplying and expanding the HIC analytical services, our UA SBRP investigators will have access to constantly improving technological capabilities in order to meet the aims of their basic scientific investigations (biomedical, environmental science, engineering, and remediation). By providing expert staff support, investigators are not burdened by concerns of having to develop and perform advanced analytical procedures that are costly in terms of personnel, laboratory space, and supplies. The HIC has been and will be an exceptional asset for facilitating the research of UA SBRP investigators.

Public Health Relevance

Chemical analysis of environmental pollutants is needed to assess environmental contamination, levels of exposure, and the disposition of contaminants. These analyses that are needed to perform proper risk assessment of environmental pollutants.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004940-24
Application #
8450301
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
24
Fiscal Year
2013
Total Cost
$128,632
Indirect Cost
$54,726
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Gonzales, Patricia; Felix, Omar; Alexander, Caitlin et al. (2014) Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits. J Hazard Mater 280:619-26
Severson, Paul L; Vrba, Lukas; Stampfer, Martha R et al. (2014) Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res Genet Toxicol Environ Mutagen 775-776:48-54
Boitano, Scott; Hoffman, Justin; Tillu, Dipti V et al. (2014) Development and evaluation of small peptidomimetic ligands to protease-activated receptor-2 (PAR2) through the use of lipid tethering. PLoS One 9:e99140
Sollome, James J; Thavathiru, Elangovan; Camenisch, Todd D et al. (2014) HER2/HER3 regulates extracellular acidification and cell migration through MTK1 (MEKK4). Cell Signal 26:70-82
Medeiros, Matthew; Le, Tam Minh; Troup, Daniel et al. (2014) Expression Of Selected Pathway-Marker Genes In Human Urothelial Cells Exposed Chronically To A Non-Cytotoxic Concentration Of Monomethylarsonous Acid. Toxicol Rep 1:421-434
Crosbie, Ewan; Sorooshian, Armin; Monfared, Negar Abolhassani et al. (2014) A Multi-Year Aerosol Characterization for the Greater Tehran Area Using Satellite, Surface, and Modeling Data. Atmosphere (Basel) 5:178-197
Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C et al. (2014) The impact of biostimulation on the fate of sulfate and associated sulfur dynamics in groundwater. J Contam Hydrol 164:240-50
Ramirez-Andreotta, Monica D; Brusseau, Mark L; Artiola, Janick F et al. (2014) Environmental Research Translation: enhancing interactions with communities at contaminated sites. Sci Total Environ 497-498:651-64
Csavina, Janae; Field, Jason; Félix, Omar et al. (2014) Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Sci Total Environ 487:82-90
Beamer, P I; Sugeng, A J; Kelly, M D et al. (2014) Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings. Environ Sci Process Impacts 16:1275-81

Showing the most recent 10 out of 312 publications