Growth and development requires the temporal and spatial coordinated expression of genes and gene products. During this critical time, in utero and early postnatal exposure to toxicants has the potential to affect gene expression, altering organ structure and physiological function. However, only limited attention has been paid to the effects of environmentally relevant exposures to toxicants during these critical periods of development. Inorganic arsenic is a ubiquitous environmental toxicant, found in high concentrations throughout the world. Drinking water exposures to high levels of arsenic either in utero or during early childhood development led to an increased risk of dying from lung cancers and chronic lung disease in adults. Our own work in animal models has demonstrated that following in utero and early postnatal exposure to arsenic, airway response to methacholine was increased in a dose dependent manner. This change appears to be permanent and the response is specific for the early developmental exposure. While exposures from ingestion of arsenic can lead to alterations, the inhalation route of exposure is also relevant to the lung. In utero and/or postnatal exposure to cigarette smoke, ambient urban air particles or metals leads to increased airway reactivity, decreased surface to volume ratios in the lung and altered lung function in the offspring. Therefore, we hypothesize that inhalation of dusts containing arsenic during sensitive developmental times will result in altered pulmonary function and structure in adults. The evaluation of the direct effects of inhaled arsenic and the potential interactions of inhaled arsenic and ingested arsenic will be the emphasis of this project. We will evaluate four aims. The first three Aims will define sensitive exposure times necessary to produce alterations in lung structure and function in the offspring:
Aim 1 will examine the effects of inhalation of arsenic and arsenic containing particles to pregnant mice (in utero exposure);
Aim 2 will examine the effects of early postnatal exposures to these compounds and Aim 3 will examine the effect of combined in utero and postnatal exposures.
Aim 4 will evaluate the effect of inhalation in combination with ingestion of arsenic.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004940-25
Application #
8659387
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
25
Fiscal Year
2014
Total Cost
$179,518
Indirect Cost
$61,023
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Simon-Pascual, Alvaro; Sierra-Alvarez, Reyes; Ramos-Ruiz, Adriana et al. (2018) Reduction of platinum (IV) ions to elemental platinum nanoparticles by anaerobic sludge. J Chem Technol Biotechnol 93:1611-1617
Lyu, Ying; Brusseau, Mark L; Chen, Wei et al. (2018) Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media. Environ Sci Technol 52:7745-7753
Zeng, Chao; Nguyen, Chi; Boitano, Scott et al. (2018) Cerium dioxide (CeO2) nanoparticles decrease arsenite (As(III)) cytotoxicity to 16HBE14o- human bronchial epithelial cells. Environ Res 164:452-458
Zeb, Bahadar; Alam, Khan; Sorooshian, Armin et al. (2018) On the Morphology and Composition of Particulate Matter in an Urban Environment. Aerosol Air Qual Res 18:1431-1447
Khan, Muhammad Amjad; Ding, Xiaodong; Khan, Sardar et al. (2018) The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Sci Total Environ 636:810-817
Yellowhair, Monica; Romanotto, Michelle R; Stearns, Diane M et al. (2018) Uranyl acetate induced DNA single strand breaks and AP sites in Chinese hamster ovary cells. Toxicol Appl Pharmacol 349:29-38
Fu, Xiaori; Dionysiou, Dionysios D; Brusseau, Mark L et al. (2018) Enhanced effect of EDDS and hydroxylamine on Fe(II)-catalyzed SPC system for trichloroethylene degradation. Environ Sci Pollut Res Int 25:15733-15742
Duncan, Candice M; Brusseau, Mark L (2018) An assessment of correlations between chlorinated VOC concentrations in tree tissue and groundwater for phytoscreening applications. Sci Total Environ 616-617:875-880
Virgone, K M; Ramirez-Andreotta, M; Mainhagu, J et al. (2018) Effective integrated frameworks for assessing mining sustainability. Environ Geochem Health 40:2635-2655
Namdari, Soodabeh; Karimi, Neamat; Sorooshian, Armin et al. (2018) Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos Environ (1994) 173:265-276

Showing the most recent 10 out of 497 publications