The UNC-CH Program's multidisciplinary research will address scientific issues that underpin the assessment and reduction of risks to human health associated with high priority chemicals at Superfund sites. The overall specific aims are to improve the scientific foundation for risk assessment, elucidate mechanisms responsible for inter-individual susceptibility, advance approaches to assessing exposure to hazardous chemicals, and more efficiently reduce risks by remediation of hazardous waste sites. In this competing continuation, we will focus on three major classes of chemicals ~ polycyclic aromatic hydrocarbons (PAHs), halogenated hydrocarbons, and heavy metals ~ in three biomedical and two non-biomedical projects, two Research Support Cores, a Research Translation Core (RTC), and an Administrative Core. Research themes that cross multiple projects and cores include: (1) developing biomarkers of exposure and effect for human and experimental models of environmental disease over a range of exposure levels to improve low-dose quantitative risk assessment;(2) applying new molecular tools in a systems biology framework to understand metabolic pathways critical for environmental disease, predict in vivo inter-individual differences in susceptibility and risk, and evaluate complex microbial communities in bioremediation systems;(3) using advanced analytical tools to identify mechanisms of genotoxicity;(4) using advanced statistical and bioinformatics methods to evaluate gene-environment interactions;and (5) quantifying the chronic exposure and bioavailability of toxic compounds in environmental systems. This work will also be integrated by sharing methods and resources across projects and cores, by regular meetings of all researchers, and by co-advising of trainees by faculty in different projects and cores. Working with investigators, the RTC will enhance the capacity of government agencies to provide technical assistance to communities, develop improved decision-support tools, and promote the commercialization of our research products. This Program is highly relevant to Superfund by addressing high-priority chemicals and by focusing on mechanisms underlying health effects, exposure assessment, and remediation to mitigate exposure and toxicity.

Public Health Relevance

This Program is relevant to public health because it will develop better means of quantifying risks to human health from exposure to hazardous chemicals, provide a genetic basis for susceptibility to diseases caused by these chemicals, improve methods to monitor exposure, and advance methods of reducing risks through remediation of contaminated sites.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1)
Program Officer
Henry, Heather F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Public Health & Prev Medicine
Schools of Public Health
Chapel Hill
United States
Zip Code
Balik-Meisner, Michele; Truong, Lisa; Scholl, Elizabeth H et al. (2018) Elucidating Gene-by-Environment Interactions Associated with Differential Susceptibility to Chemical Exposure. Environ Health Perspect 126:067010
To, Kimberly T; Fry, Rebecca C; Reif, David M (2018) Characterizing the effects of missing data and evaluating imputation methods for chemical prioritization applications using ToxPi. BioData Min 11:10
Dalaijamts, Chimeddulam; Cichocki, Joseph A; Luo, Yu-Syuan et al. (2018) Incorporation of the glutathione conjugation pathway in an updated physiologically-based pharmacokinetic model for perchloroethylene in mice. Toxicol Appl Pharmacol 352:142-152
Gray, Kathleen M (2018) From Content Knowledge to Community Change: A Review of Representations of Environmental Health Literacy. Int J Environ Res Public Health 15:
Li, Gen; Jima, Dereje; Wright, Fred A et al. (2018) HT-eQTL: integrative expression quantitative trait loci analysis in a large number of human tissues. BMC Bioinformatics 19:95
Adebambo, Oluwadamilare A; Shea, Damian; Fry, Rebecca C (2018) Cadmium disrupts signaling of the hypoxia-inducible (HIF) and transforming growth factor (TGF-?) pathways in placental JEG-3 trophoblast cells via reactive oxygen species. Toxicol Appl Pharmacol 342:108-115
Smeester, Lisa; Fry, Rebecca C (2018) Long-Term Health Effects and Underlying Biological Mechanisms of Developmental Exposure to Arsenic. Curr Environ Health Rep 5:134-144
Luo, Yu-Syuan; Furuya, Shinji; Chiu, Weihsueh et al. (2018) Characterization of inter-tissue and inter-strain variability of TCE glutathione conjugation metabolites DCVG, DCVC, and NAcDCVC in the mouse. J Toxicol Environ Health A 81:37-52
Singleton, David R; Lee, Janice; Dickey, Allison N et al. (2018) Polyphasic characterization of four soil-derived phenanthrene-degrading Acidovorax strains and proposal of Acidovorax carolinensis sp. nov. Syst Appl Microbiol 41:460-472
Luo, Yu-Syuan; Hsieh, Nan-Hung; Soldatow, Valerie Y et al. (2018) Comparative analysis of metabolism of trichloroethylene and tetrachloroethylene among mouse tissues and strains. Toxicology 409:33-43

Showing the most recent 10 out of 505 publications