The Imaging Core will provide resources and technologies to assess the effects of Superfund toxicants on cultured cells, tissues, and whole animals at the cellular and subcellular levels, in vivo and in vitro, by bioluminescence, confocal, and multiphoton laser light microscopies and also provide capabilities for subcellular to supramolecular imaging by advanced 3-dimensional electron microscopy. This core will leverage on the advanced instrumentation of the NCRR-supported National Center for Microscopy and Imaging Research (NCMTR), which Dr. Ellisman directs at UC San Diego. Working closely with Dr. Ellisman, Dr. Tsien will oversee the development and application of new fluorescence, biarsenical reporter, and tetracysteine-based methods for the analysis of gene and protein expression and detection both in cultured cells and tissues. The core is fully equipped with state-of-the-art instrumentation and is staffed with experienced scientists who shall assist in the development and execution of experiments. Personnel of the Imaging Core will provide training and assistance with novel labeling strategies, whole-animal imaging, immunofluorescence, in situ hybridization, EM immunolocalizations, EM tomography, and cryoelectron microscopy interfaced with 2D and 3D biological image analysis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES010337-06
Application #
6925215
Study Section
Special Emphasis Panel (ZES1-SET-A (S6))
Project Start
2005-04-01
Project End
2010-03-31
Budget Start
2005-04-01
Budget End
2006-03-31
Support Year
6
Fiscal Year
2005
Total Cost
$192,343
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Febbraio, Mark A; Reibe, Saskia; Shalapour, Shabnam et al. (2018) Preclinical Models for Studying NASH-Driven HCC: How Useful Are They? Cell Metab :
Fujiwara, Ryoichi; Yoda, Emiko; Tukey, Robert H (2018) Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans. Drug Metab Pharmacokinet 33:9-16
Hartmann, Phillipp; Hochrath, Katrin; Horvath, Angela et al. (2018) Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 67:2150-2166
Ganguly, Abantika; Guo, Lan; Sun, Lingling et al. (2018) Tdp1 processes chromate-induced single-strand DNA breaks that collapse replication forks. PLoS Genet 14:e1007595
Tripathi, Anupriya; Debelius, Justine; Brenner, David A et al. (2018) The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15:397-411
Chen, Shujuan; Tukey, Robert H (2018) Humanized UGT1 Mice, Regulation of UGT1A1, and the Role of the Intestinal Tract in Neonatal Hyperbilirubinemia and Breast Milk-Induced Jaundice. Drug Metab Dispos 46:1745-1755
Desai, Archita P; Mohan, Prashanthinie; Roubal, Anne M et al. (2018) Geographic Variability in Liver Disease-Related Mortality Rates in the United States. Am J Med 131:728-734
Ajmera, Veeral; Park, Charlie C; Caussy, Cyrielle et al. (2018) Magnetic Resonance Imaging Proton Density Fat Fraction Associates With Progression of Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 155:307-310.e2
Ahmadian, Maryam; Liu, Sihao; Reilly, Shannon M et al. (2018) ERR? Preserves Brown Fat Innate Thermogenic Activity. Cell Rep 22:2849-2859
Tapper, Elliot B; Loomba, Rohit (2018) Nonalcoholic fatty liver disease, metabolic syndrome, and the fight that will define clinical practice for a generation of hepatologists. Hepatology 67:1657-1659

Showing the most recent 10 out of 404 publications