Environmentally persistent free radicals (EPFRs) are formed on surfaces of transition metal oxides when molecules chemisorb on them. Electron transfer from the molecule to the metal results in reduction of the metal and the creation of spin density on the organic molecular adsorbate, i.e., formation of the EPFR. These "interfacial pollutants" are relatively stable (i.e., persisting for hours or days), so they can enter the environment and have deleterious health effects. Moreover, these systems are particularly prevalent at Superfund sites, so it is essential that they be studied and characterized in order to understand their roles in human health impacts in the vicinity of Superfund sites. However, these systems are complex and difficult to characterize, so we have designed this project to understand the detailed structural and chemical transformations that are responsible for their creation. Specifically, this project explores the physical and chemical characteristics of these particle-bound pollutants primarily using x-ray spectroscopy and TEM analysis. There are three Specific Aims: (1) Develop methods for controlled, reproducible generation of metal oxide-containing nanoparticles as surrogates of nanoclusters found in real-world environments, (2) Characterize the metal nanoparticles, structurally and electronically, and (3) Determine the surface processes and interactions of CHCs that lead to the formation of persistent free radicals and other toxic pollutants. This project characterizes the electron properties of the particle surface, which is indispensable for the other projects. Collaboration with Project 1 will lead to understanding of the structure and electronic properties of the EPFRs, which will allow those researchers to understand the factors affecting EPFR formation and reactivity. It generates background for studies of EPFRs in Superfund soils in Project 3. It similarly provides the chemistry necessary to understand the health effects induced by inhalation of EPFRs demonstrated in biomedical projects 2, 4, and 5. Finally, the structural characterization of the metal oxide particles and the surface-bound molecules will be indispensable for both the Computational Core, as well as the Materials Core.

Public Health Relevance

Environmentally persistent free radicals associated with Superfund particulate matter may be a major source of the toxicity of the particles. Because these interfacial pollutants are composed of two components that are relatively benign individually, they are currently neither adequately recognized, nor characterized.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-SET-V)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Louisiana State University A&M Col Baton Rouge
Baton Rouge
United States
Zip Code
Huang, Huaqiong; Saravia, Jordy; You, Dahui et al. (2015) Impaired gamma delta T cell-derived IL-17A and inflammasome activation during early respiratory syncytial virus infection in infants. Immunol Cell Biol 93:126-35
Park, Ji Won; Reed, James R; Brignac-Huber, Lauren M et al. (2014) Cytochrome P450 system proteins reside in different regions of the endoplasmic reticulum. Biochem J 464:241-9
Cormier, Stephania A; Shrestha, Bishwas; Saravia, Jordy et al. (2014) Limited type I interferons and plasmacytoid dendritic cells during neonatal respiratory syncytial virus infection permit immunopathogenesis upon reinfection. J Virol 88:9350-60
Lee, Greg I; Saravia, Jordy; You, Dahui et al. (2014) Exposure to combustion generated environmentally persistent free radicals enhances severity of influenza virus infection. Part Fibre Toxicol 11:57
Saravia, J; You, D; Thevenot, P et al. (2014) Early-life exposure to combustion-derived particulate matter causes pulmonary immunosuppression. Mucosal Immunol 7:694-704
Gehling, William; Khachatryan, Lavrent; Dellinger, Barry (2014) Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5. Environ Sci Technol 48:4266-72
Kiruri, Lucy W; Khachatryan, Lavrent; Dellinger, Barry et al. (2014) Effect of copper oxide concentration on the formation and persistency of environmentally persistent free radicals (EPFRs) in particulates. Environ Sci Technol 48:2212-7
Schwingshackl, Andreas; Teng, Bin; Makena, Patrudu et al. (2014) Deficiency of the two-pore-domain potassium channel TREK-1 promotes hyperoxia-induced lung injury. Crit Care Med 42:e692-701
dela Cruz, Albert Leo N; Cook, Robert L; Dellinger, Barry et al. (2014) Assessment of environmentally persistent free radicals in soils and sediments from three Superfund sites. Environ Sci Process Impacts 16:44-52
Hettiarachchi, Suraj U; Prasai, Bijeta; McCarley, Robin L (2014) Detection and cellular imaging of human cancer enzyme using a turn-on, wavelength-shiftable, self-immolative profluorophore. J Am Chem Soc 136:7575-8

Showing the most recent 10 out of 33 publications