The Computational Core will support the work of the center by calculating the properties and reactivities of models for metal oxide ultrafine particles (UFPs) and fine particles (FPs) suggested by experiment. The models of UFPs will include up to 20 metal atoms and a varying number of oxygen atoms. Reactions of these models with chlorinated benzenes and phenols to form environmentally persistent free radicals (EPFRs) and dioxins will be studied. The goal will be to provide a more complete understanding of the experimental results by identifying particularly important cluster geometries and sites on these clusters for comparison with the results for larger particles. The Core will utilize the computational facilities available at Louisiana State University and within the State of Louisiana. Louisiana State University's High Performance Computing group maintains approximately 21.5 TFIops of computing power spread over approximately 2000 cores. The Louisiana Optical Network Initiative's computing facilities provide approximately 45 TFIops of computing power spread over approximately 6000 cores. Standard software is available on these computers including Gaussian, GAMESS, NWChem, Wein, Charmm, CPMD, Gromacs, NAMD, PINY-MD, and VMD. The bulk of the computational support will use the ab initio programs Gaussian09 and CPMD, which can perform first principles calculations. Density functional calculations will use the aug-cc-pVDZ and LANL2DZ basis and selected functionals. Gaussian09 includes the MOB functional of Truhlar, which is optimized for use with transition metals. This functional, along with B3LYP and other selected hybrid functionals, will be used to optimize the geometric structures of metal oxide clusters and metal oxide-EPFR complexes. The calculated atomization and ionization energies, the electron affinities, and the charge and spin densities will be used to characterize the clusters of copper and iron oxides. The EPFR-cluster complexes formed by reaction with 2-monochlorophenol and 1,2-dichlorobenzene will be determined. The AEs of reaction, selected activation energies, and vibrational frequencies will be compared with experiment. Metal oxide clusters will be optimized for different spin states in order to determine the lowest energy spin state.

Public Health Relevance

The Computational Core will provide the first calculations of the thermodynamic and kinetic parameters of EPFR-forming reactions;the structures and electronic properties of the resulting EPFR-transition metal complexes;the structures and electronic properties of metal oxide nanoclusters;and the reaction kinetic parameters of some key, surface-mediated, dioxin-forming reactions.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-SET-V)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Louisiana State University A&M Col Baton Rouge
Baton Rouge
United States
Zip Code
Schwingshackl, Andreas; Kimura, Dai; Rovnaghi, Cynthia R et al. (2016) Regulation of inflammatory biomarkers by intravenous methylprednisolone in pediatric ARDS patients: Results from a double-blind, placebo-controlled randomized pilot trial. Cytokine 77:63-71
Potter, Phillip M; Dellinger, Barry; Lomnicki, Slawomir M (2016) Contribution of aluminas and aluminosilicates to the formation of PCDD/Fs on fly ashes. Chemosphere 144:2421-6
Stephenson, Erin J; Ragauskas, Alyse; Jaligama, Sridhar et al. (2016) Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice. Am J Physiol Endocrinol Metab 310:E1003-15
Paille, Mary; Reams, Margaret; Argote, Jennifer et al. (2016) Influences on Adaptive Planning to Reduce Flood Risks among Parishes in South Louisiana. Water (Basel) 8:
Lam, Nina S N; Reams, Margaret; Li, Kenan et al. (2016) Measuring Community Resilience to Coastal Hazards along the Northern Gulf of Mexico. Nat Hazards Rev 17:
Deese, Rachel D; LeBlanc, Madeline R; Cook, Robert L (2016) Surfactant toxicity to Artemia Franciscana and the influence of humic acid and chemical composition. Environ Chem 13:507-516
You, Dahui; Saravia, Jordy; Siefker, David et al. (2016) Crawling with Virus: Translational Insights from a Neonatal Mouse Model on the Pathogenesis of Respiratory Syncytial Virus in Infants. J Virol 90:2-4
Chuang, Gin C; Xia, Huijing; Mahne, Sarah E et al. (2016) Environmentally Persistent Free Radicals Cause Apoptosis in HL-1 Cardiomyocytes. Cardiovasc Toxicol :
Nwosu, Ugwumsinachi G; Roy, Amitava; dela Cruz, Albert Leo N et al. (2016) Formation of environmentally persistent free radical (EPFR) in iron(III) cation-exchanged smectite clay. Environ Sci Process Impacts 18:42-50
Reed, James R; Backes, Wayne L (2016) The functional effects of physical interactions involving cytochromes P450: putative mechanisms of action and the extent of these effects in biological membranes. Drug Metab Rev 48:453-69

Showing the most recent 10 out of 81 publications