Project 5. Phytoremediation to Degrade Airborne PCB Congeners from Soil &Groundwater Sources The overall goal of Project 5 is to provide engineering research (non-biomedical) for the remediation of sites containing airborne PCB congeners which may expose humans. Specifically, it is to determine whether plants can provide In situ phytoremediation of PCB congeners from the air and other airborne sources like dredged sediments at the planned Confined Disposal Facility (CDF) in East Chicago, Indiana, near two schools. Thus the Project focuses on PCB congeners of higher volatility which are present in Chicago air and which display significant mass, toxicity or persistence in the environment. Plants can uptake PCB congeners from soil and soil-water, intercept semi-volatile congeners from the air onto the waxy cuticle of leaves and bark, and metabolize contaminants directly. In addition, plants stimulate rhizosphere bioremediaton of PCBs by providing the habitat, redox potential, and substrate necessary for degradation. The significance of this project is that, by studying further the genomic, proteomic, and metabolomic basis of PCB phytoremediation, it will provide the scientific basis for the development and application of land management strategies for intervention at contaminated waste sites, and to break the continuous cycling of PCBs in the atmosphere and subsequent exposure to humans.
Four specific aims comprise Project 5: ? Identify plant metabolites of selected PCB congeners (PCB-3, 11, 15, 28, 52, 77, 153) and the uptake/resolution/metabolism of chiral compounds (PCB-95, 136) using GC/MS and LC/MS/MS ? Mineralize PCB mixtures (in mesocosms and site plots) by varying redox conditions which microbially dechlorinates PCBs under anoxic conditions and oxidizes the biphenyl ring under aerobic conditions ? Analyze the proteomic response and toxicity to pure cultures of selected aerobic PCB degraders and identified anaerobic degraders exposed to PCBs and PCB metabolites ? Characterize PCB-induced changes on the soil microbial community at CDF sites and sediments using T-RFLP analysis and proteomic analysis The leading themes of the competitive renewal are to identify more completely the PCB metabolites, the biotransformation proteins involved, and to demonstrate complete mineralization of PCB congeners in the root zone of plants by using the latest techniques of metabolomics and proteomics.

Public Health Relevance

Project 5 provides engineering research (non-biomedical) to provide the scientific basis for land management strategies to remediate contaminated sites and to intervene in the exposure of humans to PCBs and their metabolites. It is integrated with Project 4 on identifying the atmospheric sources of PCBs, with Project 6 on characterizing exposures near the planned confined disposal facility, and with the Synthesis Core. Analytical Core, and Research Translation Core.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES013661-08
Application #
8451606
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
8
Fiscal Year
2013
Total Cost
$175,241
Indirect Cost
$53,708
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Uwimana, Eric; Li, Xueshu; Lehmler, Hans-Joachim (2018) Human Liver Microsomes Atropselectively Metabolize 2,2',3,4',6-Pentachlorobiphenyl (PCB 91) to a 1,2-Shift Product as the Major Metabolite. Environ Sci Technol 52:6000-6008
Herkert, Nicholas J; Hornbuckle, Keri C (2018) Effects of room airflow on accurate determination of PUF-PAS sampling rates in the indoor environment. Environ Sci Process Impacts 20:757-766
Herkert, Nicholas J; Spak, Scott N; Smith, Austen et al. (2018) Calibration and evaluation of PUF-PAS sampling rates across the Global Atmospheric Passive Sampling (GAPS) network. Environ Sci Process Impacts 20:210-219
Dhakal, Kiran; Gadupudi, Gopi S; Lehmler, Hans-Joachim et al. (2018) Sources and toxicities of phenolic polychlorinated biphenyls (OH-PCBs). Environ Sci Pollut Res Int 25:16277-16290
Enayah, Sabah H; Vanle, Brigitte C; Fuortes, Laurence J et al. (2018) PCB95 and PCB153 change dopamine levels and turn-over in PC12 cells. Toxicology 394:93-101
Klinefelter, Kelsey; Hooven, Molly Kromme; Bates, Chloe et al. (2018) Genetic differences in the aryl hydrocarbon receptor and CYP1A2 affect sensitivity to developmental polychlorinated biphenyl exposure in mice: relevance to studies of human neurological disorders. Mamm Genome 29:112-127
Gourronc, Francoise A; Robertson, Larry W; Klingelhutz, Aloysius J (2018) A delayed proinflammatory response of human preadipocytes to PCB126 is dependent on the aryl hydrocarbon receptor. Environ Sci Pollut Res Int 25:16481-16492
Alam, Sinthia; Carter, Gwendolyn S; Krager, Kimberly J et al. (2018) PCB11 Metabolite, 3,3'-Dichlorobiphenyl-4-ol, Exposure Alters the Expression of Genes Governing Fatty Acid Metabolism in the Absence of Functional Sirtuin 3: Examining the Contribution of MnSOD. Antioxidants (Basel) 7:
Li, Xueshu; Holland, Erika B; Feng, Wei et al. (2018) Authentication of synthetic environmental contaminants and their (bio)transformation products in toxicology: polychlorinated biphenyls as an example. Environ Sci Pollut Res Int 25:16508-16521
Sethi, Sunjay; Keil, Kimberly P; Lein, Pamela J (2018) 3,3'-Dichlorobiphenyl (PCB 11) promotes dendritic arborization in primary rat cortical neurons via a CREB-dependent mechanism. Arch Toxicol 92:3337-3345

Showing the most recent 10 out of 298 publications