Polychlorinated biphenyls (PCBs) are metabolized in humans and other mammals to hydroxylated derivatives (OHPCBs) that are increasingly recognized as having significant roles in the retention of, and toxic responses to, these environmental contaminants. OHPCBs interact with cytosolic sulfotransferases (SULTs) as substrates and inhibitors, and the effects of these interactions on the toxicities of these molecules depend upon the structure of the OHPCB and the isoform(s) of SULT involved. The long term goal of Project 3 is to better understand relationships between the regulation of catalytic function of SULTs and the biological activities of OHPCBs derived from semi-volatile PCBs. The primary objectives of the work proposed for the next project period are to address gaps in our knowledge related to structure-activity relationships of OHPCBs with the family 2 (also known as hydroxysteroid or alcohol) SULTs, to elucidate how the oxidative environments of both family 1 and family 2 SULTs regulate their interactions with OHPCBs, and to understand the properties of the sulfuric acid esters of OHPCBs formed in SULT-catalyzed reactions. The central hypothesis for Project 3 is that OHPCBs serve as substrates and inhibitors of both family 1 and family 2 SULTs, and that the interactions of individual OHPCBs with these enzymes are significantly altered in a predictable manner by oxidation of thiols in these enzymes. Moreover, a corollary hypothesis is that the sulfated OHPCB-metabolites have toxicologically important chemical and biochemical properties.
The specific aims to be investigated during the next five-year period are: 1) to study the structure-activity relationships for OHPCBs as inhibitors and substrates of human hydroxysteroid sulfotransferase hSULT2A1;2) to explore the roles that the oxidation of thiols in SULTs play in regulation of their specificity for OHPCBs as inhibitors and substrates;and 3) to understand the properties of the sulfuric acid esters derived from sulfation of OHPCBs. This research will yield significant new fundamental insight into the interactions of OHPCBs with SULTs, and the potential consequences of these interactions for sulfation of endogenous molecules as well as xenobiotics.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES013661-09
Application #
8659477
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
9
Fiscal Year
2014
Total Cost
$247,670
Indirect Cost
$82,491
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Li, Xueshu; Holland, Erika B; Feng, Wei et al. (2018) Authentication of synthetic environmental contaminants and their (bio)transformation products in toxicology: polychlorinated biphenyls as an example. Environ Sci Pollut Res Int 25:16508-16521
Sethi, Sunjay; Keil, Kimberly P; Lein, Pamela J (2018) 3,3'-Dichlorobiphenyl (PCB 11) promotes dendritic arborization in primary rat cortical neurons via a CREB-dependent mechanism. Arch Toxicol 92:3337-3345
Parker, Victoria S; Squirewell, Edwin J; Lehmler, Hans-Joachim et al. (2018) Hydroxylated and sulfated metabolites of commonly occurring airborne polychlorinated biphenyls inhibit human steroid sulfotransferases SULT1E1 and SULT2A1. Environ Toxicol Pharmacol 58:196-201
Mattes, Timothy E; Ewald, Jessica M; Liang, Yi et al. (2018) PCB dechlorination hotspots and reductive dehalogenase genes in sediments from a contaminated wastewater lagoon. Environ Sci Pollut Res Int 25:16376-16388
Uwimana, Eric; Ruiz, Patricia; Li, Xueshu et al. (2018) HUMAN CYP2A6, CYP2B6 AND CYP2E1 ATROPSELECTIVELY METABOLIZE POLYCHLORINATED BIPHENYLS TO HYDROXYLATED METABOLITES. Environ Sci Technol :
Rodriguez, Eric A; Vanle, Brigitte C; Doorn, Jonathan A et al. (2018) Hydroxylated and sulfated metabolites of commonly observed airborne polychlorinated biphenyls display selective uptake and toxicity in N27, SH-SY5Y, and HepG2 cells. Environ Toxicol Pharmacol 62:69-78
Hou, Xingwang; Yu, Miao; Liu, Aifeng et al. (2018) Biotransformation of tetrabromobisphenol A dimethyl ether back to tetrabromobisphenol A in whole pumpkin plants. Environ Pollut 241:331-338
Xiao, Xin; Chen, Baoliang; Chen, Zaiming et al. (2018) Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environ Sci Technol 52:5027-5047
Herkert, Nicholas J; Jahnke, Jacob C; Hornbuckle, Keri C (2018) Emissions of Tetrachlorobiphenyls (PCBs 47, 51, and 68) from Polymer Resin on Kitchen Cabinets as a Non-Aroclor Source to Residential Air. Environ Sci Technol 52:5154-5160
P?n?íková, Kate?ina; Svržková, Lucie; Strapá?ová, Simona et al. (2018) In vitro profiling of toxic effects of prominent environmental lower-chlorinated PCB congeners linked with endocrine disruption and tumor promotion. Environ Pollut 237:473-486

Showing the most recent 10 out of 298 publications