The study of toxic heavy metals in the environment is challenging because metals are a natural component of our environment. As such, they have distinct biogeochemical cycles that govern their mobility, fate, and toxicity. A failure to understand these biogeochemical cycles will lead to a failure to adequately assess adverse impacts. Current risk assessment techniques for metals via the oral ingestion route are based on operationally defined tests which mimic the release of metals from soil in the human digestive system. A goal of this proposal is to be able to define the bioaccessibility of metals in geochemical terms, not based on operationally defined extraction methods. These goals will be tested through a combination of laboratory and in situ studies of metal-contaminated soils and mining wastes to characterize the interplay of processes that increase metal bioavailability over time and those that decrease metal bioavailability over time. Through these experiments, we will test whether the bioaccessibility of metals through oral ingestion can be predicted from the underlying speciation of metals and the characteristics of the soil itself. This study will bridge the current gap between geology and toxicology. Current risk assessment methods can determine if metals in a soil may exert risk, but not why. It is our intent to show that through the incorporation of a modest amount of geochemical analysis, we can greatly improve risk assessment for metals in soils by showing why some soils exert risk while other soils with similar levels of metals do not exert risk. In addition, with a similarly modest understanding of the temporal cycling of metals, we can show that bioaccessibility of metals in soils is not time invariant. With this knowledge, risk assessment can be proactive in understanding the nature of both current and future risks.

Public Health Relevance

The goals of this project directly align with the larger goals of the Superfund Basic Research Program. Our study is highly relevant to their Exposure Assessment Goals (we will develop tools to improve site assessment techniques through a better understanding of bioavailability), which in turn fits in with the goal of improving Risk Assessments at contaminated locations.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
United States
Zip Code
Kappil, Maya; Wright, Robert O; Sanders, Alison P (2016) Developmental Origins of Common Disease: Epigenetic Contributions to Obesity. Annu Rev Genomics Hum Genet 17:177-92
Wagner, Peter J; Park, Hae-Ryung; Wang, Zhaoxi et al. (2016) In Vitro Effects of Lead on Gene Expression in Neural Stem Cells and Associations between Upregulated Genes and Cognitive Scores in Children. Environ Health Perspect :
Gleason, Kelsey M; Valeri, Linda; Shankar, A H et al. (2016) Stunting is associated with blood lead concentration among Bangladeshi children aged 2-3 years. Environ Health 15:103
Lin, Xinyi; Lee, Seunggeun; Wu, Michael C et al. (2016) Test for rare variants by environment interactions in sequencing association studies. Biometrics 72:156-64
Stroustrup, Annemarie; Hsu, Hsiao-Hsien; Svensson, Katherine et al. (2016) Toddler temperament and prenatal exposure to lead and maternal depression. Environ Health 15:71
Kile, Molly L; Cardenas, Andres; Rodrigues, Ema et al. (2016) Estimating Effects of Arsenic Exposure During Pregnancy on Perinatal Outcomes in a Bangladeshi Cohort. Epidemiology 27:173-81
Yung, Godwin; Lin, Xihong (2016) Validity of using ad hoc methods to analyze secondary traits in case-control association studies. Genet Epidemiol 40:732-743
Kile, Molly L; Faraj, Joycelyn M; Ronnenberg, Alayne G et al. (2016) A cross sectional study of anemia and iron deficiency as risk factors for arsenic-induced skin lesions in Bangladeshi women. BMC Public Health 16:158
Rodrigues, Ema G; Bellinger, David C; Valeri, Linda et al. (2016) Neurodevelopmental outcomes among 2- to 3-year-old children in Bangladesh with elevated blood lead and exposure to arsenic and manganese in drinking water. Environ Health 15:44
Tamayo Y Ortiz, Marcela; Téllez-Rojo, Martha María; Wright, Rosalind J et al. (2016) Longitudinal associations of age and prenatal lead exposure on cortisol secretion of 12-24 month-old infants from Mexico City. Environ Health 15:41

Showing the most recent 10 out of 78 publications