The goals of the proposed project will be to further develop, biologically validate, employ, and model biological response indicator devices for gauging environmental stressors (BRIDGES). The biological response indicator devices are complementary passive sampling devices (PSD) that bridge environmental exposure and biological response/effect. Because bioavailability processes are embedded in human and ecosystem health risk frameworks, the development of complementary bio-analytical tools that quantitate bioavailability processes is important. Bio-analytical tools that have been rigorously biologically validated using a robust aquatic developmental model system are needed to biologically anchor these analytical approaches. Specifically, we will further develop the BRIDGES tool to assess fate and bioavailability of PAHs (polycyclic aromatic hydrocarbons) in sediments and overlying waters within Superfund, contaminated, urban, and undeveloped field sites and in controlled laboratory studies.
Under Specific Aim 1 we will further develop environmental exposure bio-analytical measurement technologies capable of quantitatively sequestering bioavailable contaminant concentrations.
Under Specific Aim 2 we will utilize the zebrafish developmental model to test the relative potency of PSD extracts from current Superfund, urban, and undeveloped sites.
Under Specific Aim 3 we will develop discriminatory chemical/physical fractions and constructions of PSD extracts from signatory biological responses in the zebrafish model. Develop discriminatory pattern recognition and multivariate regression assessments of co-varying components in PSD extracts and signatory biological responses. Develop a predictive link between biological response/effect and environmental exposures measured by BRIDGES.
Under Specific Aim 4 we will develop discriminatory pattern recognition and multivariate regression assessments of co-varying components in PSD extracts and contaminant source type. The role of environmental exposure and the development of complex human and aquatic health effects require innovative interdisciplinary approaches. We propose to combine two independently developed model systems to further develop, correlate, and validate exposure and response. This interface between environmental exposure and aquatic/human health risk is needed to reliably bridge quantification of exposure and environmental health.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-LKB-D)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon State University
United States
Zip Code
Garcia, Gloria R; Goodale, Britton C; Wiley, Michelle W et al. (2017) In Vivo Characterization of an AHR-Dependent Long Noncoding RNA Required for Proper Sox9b Expression. Mol Pharmacol 91:609-619
Donald, Carey E; Anderson, Kim A (2017) Assessing soil-air partitioning of PAHs and PCBs with a new fugacity passive sampler. Sci Total Environ 596-597:293-302
Wittwehr, Clemens; Aladjov, Hristo; Ankley, Gerald et al. (2017) How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology. Toxicol Sci 155:326-336
Madeen, Erin P; Williams, David E (2017) Environmental PAH exposure and male idiopathic infertility: a review on early life exposures and adult diagnosis. Rev Environ Health 32:73-81
Shrivastava, Manish; Lou, Silja; Zelenyuk, Alla et al. (2017) Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol. Proc Natl Acad Sci U S A 114:1246-1251
Geier, Mitra C; Chlebowski, Anna C; Truong, Lisa et al. (2017) Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons. Arch Toxicol :
Knecht, Andrea L; Truong, Lisa; Simonich, Michael T et al. (2017) Developmental benzo[a]pyrene (B[a]P) exposure impacts larval behavior and impairs adult learning in zebrafish. Neurotoxicol Teratol 59:27-34
Zhang, Guozhu; Truong, Lisa; Tanguay, Robert L et al. (2017) A New Statistical Approach to Characterize Chemical-Elicited Behavioral Effects in High-Throughput Studies Using Zebrafish. PLoS One 12:e0169408
Madeen, Erin P; Löhr, Christiane V; You, Hannah et al. (2017) Dibenzo[def,p]chrysene transplacental carcinogenesis in wild-type, Cyp1b1 knockout, and CYP1B1 humanized mice. Mol Carcinog 56:163-171
Knecht, Andrea L; Truong, Lisa; Marvel, Skylar W et al. (2017) Transgenerational inheritance of neurobehavioral and physiological deficits from developmental exposure to benzo[a]pyrene in zebrafish. Toxicol Appl Pharmacol 329:148-157

Showing the most recent 10 out of 156 publications