The long term goal of this project is to discover xenobiotics that contribute to preterm birth, relying on nontargeted chemical analysis by mass spectrometry. The study is focused on Puerto Rico because the incidence of preterm birth there is the second highest in the world. Three types of samples will be studied: urine, placenta and water. There are five Specific Aims.
Specific Aim 1 concerns the urine samples, and studies the hypothesis that preterm urines in Puerto Rico contain a different exposome (xenobiotics or in vivo environmental chemical exposure) than term urines. For this Specific Aim, a large volume (0.5 gallon) of urine as an accumulation of early morning voids is being collected from each pregnant woman, which then is extracted with a porous extraction paddle (stirring """"""""tea bag"""""""" filled with 2.0 g of particulate adsorbents). This new technique yields a convenient repository sample (the bag) for shipment, storage, and analysis of aliquots.
Specific Aim 2 addresses placenta, since it is the target tissue for postulated environmental chemicals that contribute to preterm birth. Here the hypothesis is that the exposome of women in Puerto Rico (preterm birth rate 17.7%) is different qualitatively or quantitatively than in Boston (preterm birth rate 10.7%). In this Specific Aim, both the organic extractable exposome, and the exposome that has formed DNA adducts, will be tested in placenta.
This Specific Aim helps to deal with the possibility that preterm birth is high in Puerto Rico because the exposomes of pregnant women there are high in general without any differences between preterm and term women.
Specific Aim 3 focuses on placental cell cultures subjected to oxidative stress and inflammation (that can be caused by xenobiotics), and seeks to learn whether DNA adducts in these stressed cultures are similar to those in preterm placenta from Puerto Rico.
Specific Aim 4 seeks to identify pollutants in ground and tap water samples in Puerto Rico, and also corresponding pollutant degradation products when these samples are remediated in Project 5 by electrolysis.
Specific Aim 5 proposes to increase the sensitivity, scope, and qualitative capability of current methods for nontargeted chemical analysis by advancing and incorporating derivatization by ionic tagging. The methodology of Specific Aim 5 will be used in the work on Specific Aims 1, 2 and 4. Overall, the project is significant in its potential to help reduce the incidence of preterm birth;in establishing and characterizing by mass spectrometry valuable repository samples from pregnant women from whom extensive demographic information is being collected;and in advancing the usefulness of nontargeted chemical analysis in general for defining the risks from exposure to environmental chemicals.

Public Health Relevance

Exposure of pregnant women to environmental chemicals may be contributing to the high rate of preterm birth worldwide. In this project we are seeking evidence for the role of chemical exposure in preterm birth by exploring the chemical composition of urine and placental samples from pregnant women, and also of water that they drink and use for bathing and cooking. Our work could lead to more understanding of preterm birth, and new regulations for chemical exposures that decrease its incidence.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES017198-05
Application #
8649397
Study Section
Special Emphasis Panel (ZES1-LKB-K (S))
Project Start
2014-04-01
Project End
2019-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
5
Fiscal Year
2014
Total Cost
$248,497
Indirect Cost
$88,692
Name
Northeastern University
Department
Type
DUNS #
001423631
City
Boston
State
MA
Country
United States
Zip Code
02115
Nazari, Roya; Raji?, Ljiljana; Xue, Yunfei et al. (2018) Degradation of 4-Chlorophenol in Aqueous Solution by Sono-Electro-Fenton Process. Int J Electrochem Sci 13:9214-9230
Zhou, Wei; Meng, Xiaoxiao; Rajic, Ljiljana et al. (2018) ""Floating"" cathode for efficient H2O2 electrogeneration applied to degradation of ibuprofen as a model pollutant. Electrochem commun 96:37-41
Ashrap, Pahriya; Watkins, Deborah J; Calafat, Antonia M et al. (2018) Elevated concentrations of urinary triclocarban, phenol and paraben among pregnant women in Northern Puerto Rico: Predictors and trends. Environ Int 121:990-1002
Ferguson, Kelly K; Meeker, John D; Cantonwine, David E et al. (2018) Environmental phenol associations with ultrasound and delivery measures of fetal growth. Environ Int 112:243-250
Cathey, Amber; Ferguson, Kelly K; McElrath, Thomas F et al. (2018) Distribution and predictors of urinary polycyclic aromatic hydrocarbon metabolites in two pregnancy cohort studies. Environ Pollut 232:556-562
Lan, Jiaqi; Rahman, Sheikh Mokhlesur; Gou, Na et al. (2018) Genotoxicity Assessment of Drinking Water Disinfection Byproducts by DNA Damage and Repair Pathway Profiling Analysis. Environ Sci Technol 52:6565-6575
Wang, Poguang; Giese, Roger W (2018) Interpretation of Mass Spectral Data for the Cisplatin 1,2 Intrastrand Guanine-Guanine Adduct. Chem Res Toxicol 31:1106-1107
Hojabri, Shirin; Rajic, Ljiljana; Alshawabkeh, Akram N (2018) Transient reactive transport model for physico-chemical transformation by electrochemical reactive barriers. J Hazard Mater 358:171-177
Ferguson, Kelly K; Kamai, Elizabeth M; Cantonwine, David E et al. (2018) Associations between repeated ultrasound measures of fetal growth and biomarkers of maternal oxidative stress and inflammation in pregnancy. Am J Reprod Immunol 80:e13017
Elkin, Elana R; Harris, Sean M; Loch-Caruso, Rita (2018) Trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine induces lipid peroxidation-associated apoptosis via the intrinsic and extrinsic apoptosis pathways in a first-trimester placental cell line. Toxicol Appl Pharmacol 338:30-42

Showing the most recent 10 out of 163 publications