Alcoholism is a chronic relapsing disorder that continues to be a serious medical and social problem in the U.S. and enhanced efforts are needed to treat it. Advances in our understanding about mechanisms underlying motivation to drink and, in particular, mechanisms that drive transition from moderate drinking to more excessive and uncontrolled drinking are key to developing new and more effective treatment strategies. A contemporary view of alcohol addiction is that adaptations in glutamate (GLU) and dopamine (DA) transmission within regions of the striatum (key components of neurocircuitry that mediate motivated behavior) play a significant role in regulation of ethanol drinking behavior. While our current research efforts have focused on neurochemical adaptations in the ventral striatum (i.e., nucleus accumbens;NAc), recent evidence suggests that adaptations in GLU and DA transmission in the dorsolateral striatum (DLS) may play a prominent role in mediating the transition from controlled drinking to uncontrolled compulsive drinking that is characteristic of ethanol dependence. Accordingly, the overall objective of this proposal is to examine adaptations in GLU and DA transmission in dorsal striatum that may qualitatively or quantitatively differ from those in ventral striatum, as well as evaluate the influence of pharmacotherapeutics on voluntary ethanol drinking and neurochemical alterations that may underlie motivation to drink in dependent compared to nondependent animals. A guiding principle of the proposal is that ethanol dependence is associated with adaptations in GLU and DA transmission within dorsolateral striatum and that play an integral role in driving transition from moderate controlled drinking to uncontrolled excessive drinking. The research plan entails use of an established mouse model of ethanol dependence and relapse drinking along with in vivo microdialysis procedures to characterize changes in extracellular levels of GLU and DA in dorsal compared to ventral regions of the striatum that are associated with escalation of voluntary ethanol drinking in dependent mice compared to stable intake exhibited by nondependent mice. Additionally, these studies will provide new information on potential neuroanatomical sites and neurochemical mechanisms underlying the ability of pharmacological treatments to reduce excessive ethanol drinking associated with dependence, which could lead to new insights and approaches in the development of more effective pharmacotherapies for the treatment of alcoholism.

Public Health Relevance

Alcoholism is a chronic relapsing disease that represents a serious public health concern. Understanding mechanisms that underlie motivation to drink and, especially, transition to uncontrolled drinking is critical for developing new and more effective treatment strategies. Accordingly, this project focuses on identifying neurochemical changes in the brain that are associated with excessive drinking in dependence, as well as evaluating the ability of drug treatments to prevent or reverse these potentially harmful consequences.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Specialized Center (P50)
Project #
2P50AA010761-16
Application #
8128127
Study Section
Special Emphasis Panel (ZAA1-GG (99))
Project Start
2011-01-01
Project End
2015-12-31
Budget Start
2011-01-01
Budget End
2011-12-31
Support Year
16
Fiscal Year
2011
Total Cost
$246,445
Indirect Cost
Name
Medical University of South Carolina
Department
Type
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Gioia, Dominic A; Xu, Minfu; Wayman, Wesley N et al. (2018) Effects of drugs of abuse on channelrhodopsin-2 function. Neuropharmacology 135:316-327
Anton, Raymond F; Latham, Patricia K; Voronin, Konstantin E et al. (2018) Nicotine-Use/Smoking Is Associated with the Efficacy of Naltrexone in the Treatment of Alcohol Dependence. Alcohol Clin Exp Res 42:751-760
Anderson, Ethan M; Larson, Erin B; Guzman, Daniel et al. (2018) Overexpression of the Histone Dimethyltransferase G9a in Nucleus Accumbens Shell Increases Cocaine Self-Administration, Stress-Induced Reinstatement, and Anxiety. J Neurosci 38:803-813
Osterndorff-Kahanek, Elizabeth A; Tiwari, Gayatri R; Lopez, Marcelo F et al. (2018) Long-term ethanol exposure: Temporal pattern of microRNA expression and associated mRNA gene networks in mouse brain. PLoS One 13:e0190841
Stewart, Scott H; Reuben, Adrian; Anton, Raymond F (2018) Reply: Carbohydrate Deficient Transferrin in Patients with Cirrhosis: A Tale of Bridges. Alcohol Alcohol 53:351-352
Kearney-Ramos, Tonisha E; Lench, Daniel H; Hoffman, Michaela et al. (2018) Gray and white matter integrity influence TMS signal propagation: a multimodal evaluation in cocaine-dependent individuals. Sci Rep 8:3253
Haun, Harold L; Griffin, William C; Lopez, Marcelo F et al. (2018) Increasing Brain-Derived Neurotrophic Factor (BDNF) in medial prefrontal cortex selectively reduces excessive drinking in ethanol dependent mice. Neuropharmacology 140:35-42
Schacht, Joseph P; Voronin, Konstantin E; Randall, Patrick K et al. (2018) Dopaminergic Genetic Variation Influences Aripiprazole Effects on Alcohol Self-Administration and the Neural Response to Alcohol Cues in a Randomized Trial. Neuropsychopharmacology 43:1247-1256
McGuier, Natalie S; Rinker, Jennifer A; Cannady, Reginald et al. (2018) Identification and validation of midbrain Kcnq4 regulation of heavy alcohol consumption in rodents. Neuropharmacology 138:10-19
Nimitvilai, Sudarat; Lopez, Marcelo F; Woodward, John J (2018) Effects of monoamines on the intrinsic excitability of lateral orbitofrontal cortex neurons in alcohol-dependent and non-dependent female mice. Neuropharmacology 137:1-12

Showing the most recent 10 out of 209 publications