Dementia with Lewy bodies (DLB) may account for 10-15 percent of all cases of dementia in the elderly, yet accurate recognition of the disorder remains a challenge. Diagnostic criteria that include typical DLB features lead to high specificity, but may fail to identify up to 50% of cases later diagnosed at autopsy. Advances in brain volumetry, which have shown promise in initial analysis of data from the Alzheimer's Disease (AD) Neuroimaging Inititative, and diffusion tensor imaging (DTI) may be used to quantify changes in brain atrophy and connectivity resulting from DLB, AD, and healthy aging. The primary goal of the proposed research is to identify brain structural changes that best differentiates these categories and to further examine the bases of such changes using magnetic resonance (MR) microscopy. To achieve this goal, four interrelated experiments are proposed. 1) Quantitative structural imaging will be used to identify the cross- sectional regional volumetric differences that best differentiate DLB, AD and healthy aging. 2) Probabilistic- atlas-based analyses will be used to identify the cross-sectional regional connectivity differences that best differentiate DLB, AD and healthy aging. 3) Assessment of within-subject change in regional volumes and connectivity will be used to identify differences in regional atrophy rates between DLB, AD and healthy aging. 4) MR microscopy will be used to identify the histopathological bases for such regional differences in MR signal. The proposal is based upon a wealth of data suggesting that structural MR imaging may be used to differentiate DLB from AD and upon preliminary studies showing that high-throughput, multi-region quantitative measures may be used to extend previous findings that used qualitative measures or limited- region volumetric assessment using manual tracing. The projects benefit from a convergence of recognized expertise in the neuropsychological assessment of DLB, in the neuropathological assessment of regional synuclein deposition, and in the application of quantitative structural MR imaging to neurodegenerative disorders, including high-field MR microscopy of post mortem tissue. In sum, results from these proposed experiments should provide important insights into the neuropathological bases of differences in MR measures of regional atrophy and connectivity in DLB, AD and healthy aging.

Public Health Relevance

The proposed experiments will evaluate structural changes in the brain that differentiate DLB, AD, and healthy aging. The findings will improve understanding about the effects of neurodegenerative disease on the brain and the neuropathological bases for regional MR changes observed in DLB and AD relative to healthy aging.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005131-30
Application #
8449631
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
30
Fiscal Year
2013
Total Cost
$168,634
Indirect Cost
$35,184
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Hanfelt, John J; Peng, Limin; Goldstein, Felicia C et al. (2018) Latent classes of mild cognitive impairment are associated with clinical outcomes and neuropathology: Analysis of data from the National Alzheimer's Coordinating Center. Neurobiol Dis 117:62-71
Zhou, Zilu; Wang, Weixin; Wang, Li-San et al. (2018) Integrative DNA copy number detection and genotyping from sequencing and array-based platforms. Bioinformatics 34:2349-2355
Burke, Shanna L; Hu, Tianyan; Fava, Nicole M et al. (2018) Sex differences in the development of mild cognitive impairment and probable Alzheimer's disease as predicted by hippocampal volume or white matter hyperintensities. J Women Aging :1-25
Wang, Qi; Guo, Lei; Thompson, Paul M et al. (2018) The Added Value of Diffusion-Weighted MRI-Derived Structural Connectome in Evaluating Mild Cognitive Impairment: A Multi-Cohort Validation1. J Alzheimers Dis 64:149-169
Sundermann, Erin E; Tran, My; Maki, Pauline M et al. (2018) Sex differences in the association between apolipoprotein E ?4 allele and Alzheimer's disease markers. Alzheimers Dement (Amst) 10:438-447
Besser, Lilah; Kukull, Walter; Knopman, David S et al. (2018) Version 3 of the National Alzheimer's Coordinating Center's Uniform Data Set. Alzheimer Dis Assoc Disord 32:351-358
Graves, Lisa V; Van Etten, Emily J; Holden, Heather M et al. (2018) Refining CVLT-II recognition discriminability indices to enhance the characterization of recognition memory changes in healthy aging. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 25:767-782
Edmonds, Emily C; Weigand, Alexandra J; Thomas, Kelsey R et al. (2018) Increasing Inaccuracy of Self-Reported Subjective Cognitive Complaints Over 24 Months in Empirically Derived Subtypes of Mild Cognitive Impairment. J Int Neuropsychol Soc 24:842-853
Wang, Tingyan; Qiu, Robin G; Yu, Ming (2018) Predictive Modeling of the Progression of Alzheimer's Disease with Recurrent Neural Networks. Sci Rep 8:9161
Crum, Jana; Wilson, Jeffrey; Sabbagh, Marwan (2018) Does taking statins affect the pathological burden in autopsy-confirmed Alzheimer's dementia? Alzheimers Res Ther 10:104

Showing the most recent 10 out of 914 publications