The amyloid p-protein (Afi) is closely linked to the pathophysiological processes that lead to Alzheimer disease (AD), and likely are ultimately responsible for the neural system collapse that causes the clinical syndrome of dementia. However the mechanistic role of Afi and the form in which it is toxic remain controversial. One hypothesis is that the insoluble amyloid plaque itself is deleterious to the brain. Contrasting this argument is the hypothesis that the damage is caused by soluble Aft oligomers. The overall goal of his Project is to examine these two competing hypotheses critically and determine whether one or both are more likely. In this research plan, we propose three specific aims built around advances in biochemical and morphological techniques. To learn whether and how soluble A(3oligomers, monomers and/or plaque cores correlate with the histopathological changes (gliosis, Ap deposits, neurofibrillary tangles), we will quantify the levels of soluble oligomers and monomers by new Size Exclusion Chromatography and sensitive IP/Western techniques and correlate these findings with each subject's detailed neuropathological phenotype and with clinical information. A second approach to these questions will utilize a newly developed histological preparation that allows visualization of individual synaptic elements, fibrillar Ap, and oligomeric Ap simultaneously. We have observed that oligomeric Ap-directed antibodies reveal a "halo" around plaques that corresponds to the region around plaques that have diminished dendritic spine density. Furthermore, oligomeric Ap-directed antibodies demonstrate puncta that co-localize with PSD95 positive dendritic spines. These observations motivate an analysis of oligomeric Apand synaptic change that will take aim at fundamental mechanisms of Ap-associated synaptic loss. These studies will address a central unresolved question: how do soluble oligomeric forms relate to the fibrillar, histologically detected forms of Ap. Moreover, our experiments will also directly address whether Ap in cognitively normal controls who have Ap deposits differ from those in subjects with AD. By taking advantage of well characterized material from the MADRC Neuropathology Core's Brain Bank, Clinical Core evaluations, and Statistical Core expertise, we plan to test hypotheses directed at the relationship of Ap to cognitive impairment and neuronal toxicity.

Public Health Relevance

Project 3 of the Massachusetts ADRC will test the competing hypotheses of the role of Ap protein and the form in which its toxicity is associated with cognitive dysfunction and Alzheimer's disease neuropathology.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Viswanathan, Anand; Greenberg, Steven M; Scheltens, Philip (2016) Role of Vascular Disease in Alzheimer-Like Progressive Cognitive Impairment. Stroke 47:577-80
Dhilla Albers, Alefiya; Asafu-Adjei, Josephine; Delaney, Mary K et al. (2016) Episodic memory of odors stratifies Alzheimer biomarkers in normal elderly. Ann Neurol 80:846-857
Day, Gregory S; Musiek, Erik S; Roe, Catherine M et al. (2016) Phenotypic Similarities Between Late-Onset Autosomal Dominant and Sporadic Alzheimer Disease: A Single-Family Case-Control Study. JAMA Neurol 73:1125-32
Ronquillo, Jay Geronimo; Baer, Merritt Rachel; Lester, William T (2016) Sex-specific patterns and differences in dementia and Alzheimer's disease using informatics approaches. J Women Aging 28:403-11
Herold, C; Hooli, B V; Mullin, K et al. (2016) Family-based association analyses of imputed genotypes reveal genome-wide significant association of Alzheimer's disease with OSBPL6, PTPRG, and PDCL3. Mol Psychiatry 21:1608-1612
Serrano-Pozo, Alberto; Betensky, Rebecca A; Frosch, Matthew P et al. (2016) Plaque-Associated Local Toxicity Increases over the Clinical Course of Alzheimer Disease. Am J Pathol 186:375-84
Ridge, Perry G; Hoyt, Kaitlyn B; Boehme, Kevin et al. (2016) Assessment of the genetic variance of late-onset Alzheimer's disease. Neurobiol Aging 41:200.e13-20
Ringman, John M; Monsell, Sarah; Ng, Denise W et al. (2016) Neuropathology of Autosomal Dominant Alzheimer Disease in the National Alzheimer Coordinating Center Database. J Neuropathol Exp Neurol 75:284-90
Grogg, Kira S; Toole, Terrence; Ouyang, Jinsong et al. (2016) National Electrical Manufacturers Association and Clinical Evaluation of a Novel Brain PET/CT Scanner. J Nucl Med 57:646-52
Rentz, Dorene M; Dekhtyar, Maria; Sherman, Julia et al. (2016) The Feasibility of At-Home iPad Cognitive Testing For Use in Clinical Trials. J Prev Alzheimers Dis 3:8-12

Showing the most recent 10 out of 717 publications