Human CNS-Apolipoprotein E Isoform Production and Clearance A.
Specific Aims : Alzheimer's disease (AD) is a common, devastating disease. 5 million Americans are suffering from AD, and it is currently estimated that by 2050 this number will triple. The only major and wellvalidated genetic risk factor for AD is one's Apolipoprotein E (ApoE) genotype. One ApoE4 allele increases the risk of developing AD by 3-fold, while two copies of ApoE4 increase this risk by 12-fold. A reduced risk for AD is associated with the ApoE2 allele. The metabolism and function of ApoE is partially understood in the periphery, however very little is known about ApoE in the central nervous system (CNS). Because ApoE plays such an important role in the CNS, and because its metabolism in the CNS is not well understood, we propose to determine the physiology and possible isoform pathophysiology as it relates to AD. Isoform dependent changes in ApoE metabolism and amount (and subsequently transport of AP) may underiie the increased risk of AD in humans. Hypothesis 1: ApoE4 amount is less in the brain and CSF vs. ApoE3. Hypothesis 2: ApoE4 clearance rate or turn-over rate if faster in the CNS compared to ApoE3.
Specific Aim : Utilizing a recently developed mass spectrometry assay to measure ApoE isoforms independently, we will measure ApoE4 and ApoE3 in the human brain and CSF. In addition, the in vivo metabolism of human ApoE will be measured using stable isotope-labeling and mass spectrometry in 60 cognitively normal or dementia of the Alzheimer's type (DAT) participants with E2, E3 or E4 ApoE alleles. These participants will be recruited from the Washington University ADRC. B. Relevance to Alzheimer's Disease: ApoE is the strongest genetic risk factor for Alzheimer's disease, and is a potential target for disease-modifying therapies. Our data will provide an important link regarding how ApoE4 may be involved in the pathophysiology of Alzheimer's disease, and may lead to improved therapeutics, which target the major genetic risk factor of Alzheimer's disease, ApoE4.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005681-29
Application #
8441092
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
29
Fiscal Year
2012
Total Cost
$182,451
Indirect Cost
$62,107
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Strain, Jeremy F; Smith, Robert X; Beaumont, Helen et al. (2018) Loss of white matter integrity reflects tau accumulation in Alzheimer disease defined regions. Neurology 91:e313-e318
Roe, Catherine M; Babulal, Ganesh M; Stout, Sarah H et al. (2018) Using the A/T/N Framework to Examine Driving in Preclinical AD. Geriatrics (Basel) 3:
Qian, Winnie; Fischer, Corinne E; Schweizer, Tom A et al. (2018) Association Between Psychosis Phenotype and APOE Genotype on the Clinical Profiles of Alzheimer's Disease. Curr Alzheimer Res 15:187-194
Brent, Robert J (2018) Estimating the monetary benefits of medicare eligibility for reducing the symptoms of dementia. Appl Econ 50:6327-6340
Suárez-Calvet, Marc; Capell, Anja; Araque Caballero, Miguel Ángel et al. (2018) CSF progranulin increases in the course of Alzheimer's disease and is associated with sTREM2, neurodegeneration and cognitive decline. EMBO Mol Med 10:
Gallagher, Damien; Kiss, Alex; Lanctot, Krista et al. (2018) Depression and Risk of Alzheimer Dementia: A Longitudinal Analysis to Determine Predictors of Increased Risk among Older Adults with Depression. Am J Geriatr Psychiatry 26:819-827
Ogren, Jennifer A; Tripathi, Raghav; Macey, Paul M et al. (2018) Regional cortical thickness changes accompanying generalized tonic-clonic seizures. Neuroimage Clin 20:205-215
Besser, Lilah; Kukull, Walter; Knopman, David S et al. (2018) Version 3 of the National Alzheimer's Coordinating Center's Uniform Data Set. Alzheimer Dis Assoc Disord 32:351-358
Aschenbrenner, Andrew J; Gordon, Brian A; Benzinger, Tammie L S et al. (2018) Influence of tau PET, amyloid PET, and hippocampal volume on cognition in Alzheimer disease. Neurology 91:e859-e866
Deming, Yuetiva; Dumitrescu, Logan; Barnes, Lisa L et al. (2018) Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol 136:857-872

Showing the most recent 10 out of 952 publications