The overarching goal of the Neuroimaging and Biomarkers Core (NIBC) will be to bring together neuroimaging, plasma, cerebrospinal fluid (CSF), and other potentially relevant biomarkers to facilitate ADRC research projects and other ongoing studies, assist in initiating new projects, and encourage new investigators to benefit from the strengths in these areas at UCLA and at other institutions. Our ultimate goal - manifested in targeting subjects with pre-clinical cognitive changes and the interaction with Projects 1 and 2 - is to develop image acquisition, archiving, and analysis technologies to the point that they are valuable tools in the effort to support treatments that can delay, prevent, or slow the progression of degenerative brain diseases. The NIBC specific aims are: (1) Collect and archive longitudinal high-resolution structural MRI data on ADRC subjects. (2) Provide support for imaging analysis for longitudinal amyloid plaque and tau tangle (FDDNP) and Pittsburgh Compound-B (PIB) PET imaging on subjects enrolled in Project 2. (3) Interact with the Clinical Core and the Neuropathology Core in collecting plasma and tissue samples for planned proteomic and genomic studies, (plasma and CSF) (4) Provide the means for investigators to obtain rapid and reliable quantification and diagnostic interpretation of imaging data acquired from subjects or patients evaluated for mild cognitive dysfunction or dementia. (5) Support the other cores and projects of the ADRC, and promote the Therapeutic Imperative theme, activities, and mission of the ADRC. The Core is designed to leverage UCLA's current imaging research strengths, particularly in the development of new imaging methods and PET radioligands, and the DMSC has special biomarker systems support devoted to NIBC. Moreover, we recognize the critical importance of integrating informative imaging data with other relevant biomarkers. Given the important role of neuroimaging and biomarkers in current AD research within the ADRC and elsewhere, the NIBC will have a pivotal role in these investigations. The Core will interact with and support Project 1 (MRI biomarkers of incipient AD) and Project 2 (using both FDDNP and PIB and plasma and CSF biomarkers), as well as with the on-going research of the Jim Easton Consortium for Alzheimer's Drug Discovery and Biomarker Development at UCLA.

Public Health Relevance

Neuroimaging and other biomarkers have taken on an incrementally important role in advancing clinical research in Alzheimer's disease (AD) and providing key opportunities for translating basic science discoveries into clinical applications. The UCLA NIBC will bring together multiple biomarkers to better understand the peripheral indicators and brain imaging of Alzheimer's type brain disease.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG016570-12
Application #
8440499
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
1999-04-05
Project End
2015-03-31
Budget Start
2011-04-15
Budget End
2012-03-31
Support Year
12
Fiscal Year
2011
Total Cost
$181,684
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Jutkowitz, Eric; MacLehose, Richard F; Gaugler, Joseph E et al. (2017) Risk Factors Associated With Cognitive, Functional, and Behavioral Trajectories of Newly Diagnosed Dementia Patients. J Gerontol A Biol Sci Med Sci 72:251-258
Sokolow, Sophie; Li, Xiaohui; Chen, Lucia et al. (2017) Deleterious Effect of Butyrylcholinesterase K-Variant in Donepezil Treatment of Mild Cognitive Impairment. J Alzheimers Dis 56:229-237
Ringman, John M; Casado, Maria; Van Berlo, Victoria et al. (2017) A novel PSEN1 (S230N) mutation causing early-onset Alzheimer's Disease associated with prosopagnosia, hoarding, and Parkinsonism. Neurosci Lett 657:11-15
Jefferson-George, Kyra S; Wolk, David A; Lee, Edward B et al. (2017) Cognitive decline associated with pathological burden in primary age-related tauopathy. Alzheimers Dement 13:1048-1053
Katsumata, Yuriko; Nelson, Peter T; Ellingson, Sally R et al. (2017) Gene-based association study of genes linked to hippocampal sclerosis of aging neuropathology: GRN, TMEM106B, ABCC9, and KCNMB2. Neurobiol Aging 53:193.e17-193.e25
Ringman, John M (2017) Update on Alzheimer's and the Dementias: Introduction. Neurol Clin 35:171-174
Qian, Jing; Hyman, Bradley T; Betensky, Rebecca A (2017) Neurofibrillary Tangle Stage and the Rate of Progression of Alzheimer Symptoms: Modeling Using an Autopsy Cohort and Application to Clinical Trial Design. JAMA Neurol 74:540-548
Chang, Timothy S; Teng, Edmond; Elashoff, David et al. (2017) Optimizing Effect Sizes With Imaging Enrichment and Outcome Choices for Mild Alzheimer Disease Clinical Trials. Alzheimer Dis Assoc Disord 31:19-26
Blanken, Anna E; Hurtz, Sona; Zarow, Chris et al. (2017) Associations between hippocampal morphometry and neuropathologic markers of Alzheimer's disease using 7 T MRI. Neuroimage Clin 15:56-61
Kim, Julia; Schweizer, Tom A; Fischer, Corinne E et al. (2017) The Role of Cerebrovascular Disease on Cognitive and Functional Status and Psychosis in Severe Alzheimer's Disease. J Alzheimers Dis 55:381-389

Showing the most recent 10 out of 704 publications