The work during the initial CORT funding period established the following principles: i) periosteal MSCs respond to injury with proliferation and expansion;ii) The expanded population of MSCs secretes growth factors and responds to signals that drive bone repair;iii) COX-2/PGE2 is a key early reparative signal;iv) aging results in reduced COX-2 expression during bone repair;and 5) PTH{1-34} (PTH) compensates for the reduced healing observed in aging and COX-2[-/-] mice. The ongoing goal of Project 2 is to provide a clear and comprehensive paradigm of the cell populations and signaling mechanisms regulated by PTH during bone repair responsible for its anabolic effects.
Aims 1 and 2 use in vivo models of bone repair, while Aim 3 uses a complementary in vivo approach. Experiments in Aim 1 define periosteum as a key target for bone repair with age dependent responsiveness. The experiments will show that PTH acts specifically on periosteal MSC and stimulates three signaling pathways that are potent mediators of bone formation: Wnt/p- catenin, BMP/Smad, and lhh/Gli-2/Ptc.
Aim 2 provides genetic evidence that Wnt/Beta-catenin signaling is an essential component of the mechanism whereby PTH stimulates bone repair.
Aim 3 uses a highly innovative approach to isolate and culture periosteal stem cells. Using genetically altered mice the signals that are sequentially activated downstream of PTH are examined in isolated periosteal stem cells. Collectively, the experiments in the 3 Aims will establish that 1) PTH enhances Wnt/p-catenin and BMP/Smad signaling (stem cell proliferation/expansion, osteoblast differentiation) from periosteal/endosteal MSCs);ii) Wnt/p-catenin stimulates BMP-2 expression and BMP/Smad signaling (osteoblast differentiation/bone formation and chondrogenesis);c) BMP/Smad and Wnt/Beta-catenin signaling stimulate Ihh/Ptc signaling (bone formation). The CORT Program is based upon the unifying concept that i) expansion and differentiation of the MSC population as a critical event in musculoskeletal repair;and ii) PTH is key anabolic agent that promotes tissue specific MSC expansion and repair events. The integration of Project 2 with the other CORT Projects through an Administrative Core that enhances collaborations and access to an innovative and comprehensive Molecular and Anatomic Imaging Core will leverage the remarkable progress of the initial funding period and lead to important novel insights and therapies for orthopaedic trauma patients.

Public Health Relevance

The goal of Project 2 is to provide a clear and comprehensive paradigm of the cell populations and signaling mechanisms regulated by PTH during bone repair responsible for its anabolic effects. This provides the compelling rationale for the translation of PTH therapies to patients with bone injuries.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-KM)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Rochester
United States
Zip Code
Hamada, Daisuke; Maynard, Robert; Schott, Eric et al. (2016) Suppressive Effects of Insulin on Tumor Necrosis Factor-Dependent Early Osteoarthritic Changes Associated With Obesity and Type 2 Diabetes Mellitus. Arthritis Rheumatol 68:1392-402
Liu, Z; Ren, Y; Mirando, A J et al. (2016) Notch signaling in postnatal joint chondrocytes, but not subchondral osteoblasts, is required for articular cartilage and joint maintenance. Osteoarthritis Cartilage 24:740-51
Zhang, Yongchun; Sheu, Tzong-jen; Hoak, Donna et al. (2016) CCN1 Regulates Chondrocyte Maturation and Cartilage Development. J Bone Miner Res 31:549-59
Sheyn, Dmitriy; Shapiro, Galina; Tawackoli, Wafa et al. (2016) PTH Induces Systemically Administered Mesenchymal Stem Cells to Migrate to and Regenerate Spine Injuries. Mol Ther 24:318-30
Papuga, Mark O; Mesfin, Addisu; Molinari, Robert et al. (2016) Correlation of PROMIS Physical Function and Pain CAT Instruments With Oswestry Disability Index and Neck Disability Index in Spine Patients. Spine (Phila Pa 1976) 41:1153-9
de Mesy Bentley, Karen L; Trombetta, Ryan; Nishitani, Kohei et al. (2016) Evidence of Staphylococcus aureus Deformation, Proliferation and Migration in Canaliculi of Live Cortical Bone in Murine Models of Osteomyelitis. J Bone Miner Res :
Han, Songfeng; Proctor, Ashley R; Vella, Joseph B et al. (2016) Non-invasive diffuse correlation tomography reveals spatial and temporal blood flow differences in murine bone grafting approaches. Biomed Opt Express 7:3262-3279
Wang, Cuicui; Inzana, Jason A; Mirando, Anthony J et al. (2016) NOTCH signaling in skeletal progenitors is critical for fracture repair. J Clin Invest 126:1471-81
Zhang, Hengwei; Sun, Wen; Li, Xing et al. (2016) Use of Hes1-GFP reporter mice to assess activity of the Hes1 promoter in bone cells under chronic inflammation. Bone 90:80-9
Antebi, Ben; Zhang, Longze; Sheyn, Dmitriy et al. (2016) Controlling Arteriogenesis and Mast Cells Are Central to Bioengineering Solutions for Critical Bone Defect Repair Using Allografts. Bioengineering (Basel) 3:

Showing the most recent 10 out of 118 publications