Recently, magnetic resonance (MR) T2 and T1p relaxation time measurements have emerged as potential markers for early biochemical cartilage degeneration, and thus may be important when examining the pathogenesis of OA. Additionally, changes in kinematics, kinetics, spatiotemporal gait characteristics and functional activities have been reported in patients with early hip OA. The proposed study aims to investigate biochemical differences that may be seen in mild and moderate radiographic hip OA using MRI, exploring their relation to kinematics and function. It also aims to explore cartilage degeneration and progression of hip OA longitudinally, and establish the relationship between changes in composition and the development of morphological lesions. Our central hypothesis is that image-based measures of hip cartilage biochemical composition differs between controls and patients with hip OA, and are related to cartilage morphology, hip biomechanics, pain, function and severity of disease. To test this hypothesis, this study will 1) characterize hip cartilage composition (measured by MRI Tip and T2 relaxation times) in patients with hip OA, compared to controls, 2) determine the cross-sectional and longitudinal relationship between hip cartilage composition and morphology, and 3) determine whether hip cartilage composition is related to patient function (kinematics, kinetics, spatiotemporal gait characteristics, functional tests) and pain (WOMAC), both cross-sectionally and longitudinally. The results of the proposed study will help determine whether early biochemical degeneration in cartilage, as quantified by T2 and T1p mapping parameters, is associated with the progression of hip OA and is related to hip OA outcomes such as detriments in patient function. By evaluating the interrelationship between MR markers of compositional changes in OA and movement patterns during functional tasks, this study provides an essential link between tissue structure and function in the hip joint. In this proposal, an interdisciplinary team extends their extensive prior work in the knee, and to elucidate the complex interactions of abnormal movement patterns, cartilage biochemical and morphologic degeneration during the progression and outcomes of hip OA.

Public Health Relevance

Osteoarthritis (OA) is the second most common cause of permanent disability among subjects over the age of fifty. Given limited treatment options preventive efforts are of central importance to preserve joint health. This, however, requires sensitive biomarkers to predict the risk of OA and monitor its progression. The overall impact of this project will be to investigate the role of the imaging biomarkers in normal individuals, those with hip OA in the evolution and progression of the disease.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-KM)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
San Francisco
United States
Zip Code
Lee, Sonia; Nardo, Lorenzo; Kumar, Deepak et al. (2015) Scoring hip osteoarthritis with MRI (SHOMRI): A whole joint osteoarthritis evaluation system. J Magn Reson Imaging 41:1549-57
Liebl, Hans; Heilmeier, Ursula; Lee, Sonia et al. (2015) In vitro assessment of knee MRI in the presence of metal implants comparing MAVRIC-SL and conventional fast spin echo sequences at 1.5 and 3 T field strength. J Magn Reson Imaging 41:1291-9
Subburaj, Karupppasamy; Souza, Richard B; Wyman, Bradley T et al. (2015) Changes in MR relaxation times of the meniscus with acute loading: An in vivo pilot study in knee osteoarthritis. J Magn Reson Imaging 41:536-43
Lansdown, Drew A; Zaid, Musa; Pedoia, Valentina et al. (2015) Reproducibility measurements of three methods for calculating in vivo MR-based knee kinematics. J Magn Reson Imaging 42:533-8
Serebrakian, Arman T; Poulos, Theresa; Liebl, Hans et al. (2015) Weight loss over 48 months is associated with reduced progression of cartilage T2 relaxation time values: data from the osteoarthritis initiative. J Magn Reson Imaging 41:1272-80
Chaudhari, Abhijit J; Leahy, Richard M; Wise, Barton L et al. (2014) Global point signature for shape analysis of carpal bones. Phys Med Biol 59:961-73
Katzman, Wendy B; Miller-Martinez, Dana; Marshall, Lynn M et al. (2014) Kyphosis and paraspinal muscle composition in older men: a cross-sectional study for the Osteoporotic Fractures in Men (MrOS) research group. BMC Musculoskelet Disord 15:19
Souza, R B; Kumar, D; Calixto, N et al. (2014) Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis. Osteoarthritis Cartilage 22:1367-76
Wise, Barton L; Parimi, Neeta; Zhang, Yuqing et al. (2014) Frailty and hip osteoarthritis in men in the MrOS cohort. J Gerontol A Biol Sci Med Sci 69:602-8
Boissonneault, A; Lynch, J A; Wise, B L et al. (2014) Association of hip and pelvic geometry with tibiofemoral osteoarthritis: multicenter osteoarthritis study (MOST). Osteoarthritis Cartilage 22:1129-35

Showing the most recent 10 out of 35 publications