The identification of the Duchenne muscular dystrophy gene and protein in the late 1980's led to high hopes of rapid translation to rational therapeutics. Early reports of delivering new functional genes to mouse model muscle via gene therapy and stem cell therapy fueled this hope. However, these same studies illuminated the very high hurdles facing human applications. Insufficient therapeutic material (cells, viral vectors), challenges in systemic delivery, and immunological hurdles all remain barriers to demonstration of efficacy of exogenous gene delivery. An alternative approach Is to repair the patient's own gene, and two innovative small molecule approaches have emerged as front-line experimental therapeutics: stop codon read through, and exon skipping. Both approaches are In human clinical trials, and aim to coax dystrophin protein production from mutant genes. In the clinically severe dog model of DMD, the exon-skipping approach is the first therapeutic method that showed improvement of multiple functional outcomes. The proposed CORT is focusing on exon-skipping, the approach that holds promise for the majority of DMD patients. Exon skipping as a drug development program Is highly complex. Patients have different mutations, and drugs must be customized to groups of patients sharing overlapping deletions. Given the high cost of drug development, there is an emerging consensus that exon skipping should achieve drug approval 'as a class'. Three exon-specific drugs should be systematically studied, showing safety and efficacy. The procedures and rules optimized for these three drugs can then be generalized to other, less commonly applicable exon- specific drugs, with reduced regulatory hurdles. The goal of this CORT is to systematically study the three most commonly applicable exon-specific drugs (exons 45,51.53). Project 1 will determine the splicing fidelity and protein function corresponding to the In-frame transcripts generated by the drugs. Project 2 will optimize sequence selection for each exon using multiple experimental systems, and test optimized drugs in a 1 yr pre-clinical efficacy study. Project 3 will carry out the first natural history study of the targeted in-frame deletions (Becker muscular dystrophy);this will permit some prediction of clinical efficacy from production of the relevant semi-functional dystrophin proteins. These three Projects draw upon two research cores: Core B (In vitro and In vivo functional assays), and Core C (Molecular diagnostics and cell banking).

National Institute of Health (NIH)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1)
Program Officer
Boyce, Amanda T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Children's Research Institute
United States
Zip Code
Tatem, Kathleen S; Quinn, James L; Phadke, Aditi et al. (2014) Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases. J Vis Exp :51785
Jaiswal, Jyoti K; Lauritzen, Stine P; Scheffer, Luana et al. (2014) S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells. Nat Commun 5:3795
Defour, A; Van der Meulen, J H; Bhat, R et al. (2014) Dysferlin regulates cell membrane repair by facilitating injury-triggered acid sphingomyelinase secretion. Cell Death Dis 5:e1306
Uaesoontrachoon, Kitipong; Quinn, James L; Tatem, Kathleen S et al. (2014) Long-term treatment with naproxcinod significantly improves skeletal and cardiac disease phenotype in the mdx mouse model of dystrophy. Hum Mol Genet 23:3239-49
Heier, Christopher R; Guerron, Alfredo D; Korotcov, Alexandru et al. (2014) Non-invasive MRI and spectroscopy of mdx mice reveal temporal changes in dystrophic muscle imaging and in energy deficits. PLoS One 9:e112477
Henriques-Pons, Andrea; Yu, Qing; Rayavarapu, Sree et al. (2014) Role of Toll-like receptors in the pathogenesis of dystrophin-deficient skeletal and heart muscle. Hum Mol Genet 23:2604-17
Defour, Aurelia; Sreetama, S C; Jaiswal, Jyoti K (2014) Imaging cell membrane injury and subcellular processes involved in repair. J Vis Exp :
Heier, Christopher R; Damsker, Jesse M; Yu, Qing et al. (2013) VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects. EMBO Mol Med 5:1569-85
Rayavarapu, Sree; Coley, William; Cakir, Erdinc et al. (2013) Identification of disease specific pathways using in vivo SILAC proteomics in dystrophin deficient mdx mouse. Mol Cell Proteomics 12:1061-73
Uaesoontrachoon, Kitipong; Cha, Hee-Jae; Ampong, Beryl et al. (2013) The effects of MyD88 deficiency on disease phenotype in dysferlin-deficient A/J mice: role of endogenous TLR ligands. J Pathol 231:199-209

Showing the most recent 10 out of 12 publications