Protein kinases are arguably the most tractable candidates for development of new therapies to treat breast cancer. Recent data has shown that kinase cascades and signaling pathways are interrelated;inhibition by one pharmacologic kinase inhibitor has consequences beyond its cognate targets. Our hypothesis predicts that defining tumor kinome activity, and overall kinome-level response to therapy, will identify kinase signatures that can be targeted to accelerate development of new therapies for clinical trials. Project 5 uses an innovative new technology to study the kinome in the Basal-like and Claudin-low subtypes elucidating novel kinase targets and defining differences between these two subtypes. The technology affinity captures endogenous kinases and analyzes their activity with quantitative mass spectrometry, providing us with large scale, kinome activity profiles in tumors and cells. The quantitative proteomic assessment can also be used in dynamic tests determining what fraction of the kinome responds to inhibition of targeted kinases. The Raf- MEK-ERK pathway is often activated in Basal-like and Claudin-low breast cancer. For proof of concept, we defined the kinome response to MEK inhibition in a Claudin-low cell line and mouse tumor model of Basal- like/Claudin-low breast cancer. The tumor response to targeted kinase inhibition involved a highly reproducible induction and activation of multiple RTKs that contributed to drug resistance. Given the repertoire of RTKs whose expression and activity was induced with MEK inhibition, we predicted that a combination therapy that would

Public Health Relevance

Defining the activation state of kinases in patient tumors and response of tumor kinases to drug treatment identifies previously untargeted kinases essential for tumor growth and survival. Our experimental rationale will allow the design of new clinical trials involving combinations of kinase inhibitors based on properties of the kinome in Claudin-low and Basal-like breast cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA058223-20
Application #
8547139
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
20
Fiscal Year
2013
Total Cost
$151,722
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Sharma, Priyanka; López-Tarruella, Sara; García-Saenz, José Angel et al. (2018) Pathological Response and Survival in Triple-Negative Breast Cancer Following Neoadjuvant Carboplatin plus Docetaxel. Clin Cancer Res 24:5820-5829
Siegel, Marni B; He, Xiaping; Hoadley, Katherine A et al. (2018) Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer. J Clin Invest 128:1371-1383
Kumar, Sunil; Lindsay, Daniel; Chen, Q Brent et al. (2018) Tracking plasma DNA mutation dynamics in estrogen receptor positive metastatic breast cancer with dPCR-SEQ. NPJ Breast Cancer 4:39
Smith, Christof C; Beckermann, Kathryn E; Bortone, Dante S et al. (2018) Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J Clin Invest 128:4804-4820
Wheeler, Stephanie B; Spencer, Jennifer C; Pinheiro, Laura C et al. (2018) Financial Impact of Breast Cancer in Black Versus White Women. J Clin Oncol 36:1695-1701
Hong, Chi-Chen; Sucheston-Campbell, Lara E; Liu, Song et al. (2018) Genetic Variants in Immune-Related Pathways and Breast Cancer Risk in African American Women in the AMBER Consortium. Cancer Epidemiol Biomarkers Prev 27:321-330
Tanioka, Maki; Mott, Kevin R; Hollern, Daniel P et al. (2018) Identification of Jun loss promotes resistance to histone deacetylase inhibitor entinostat through Myc signaling in luminal breast cancer. Genome Med 10:86
Tanioka, Maki; Fan, Cheng; Parker, Joel S et al. (2018) Integrated Analysis of RNA and DNA from the Phase III Trial CALGB 40601 Identifies Predictors of Response to Trastuzumab-Based Neoadjuvant Chemotherapy in HER2-Positive Breast Cancer. Clin Cancer Res 24:5292-5304
Mundt, Filip; Rajput, Sandeep; Li, Shunqiang et al. (2018) Mass Spectrometry-Based Proteomics Reveals Potential Roles of NEK9 and MAP2K4 in Resistance to PI3K Inhibition in Triple-Negative Breast Cancers. Cancer Res 78:2732-2746
Takaku, Motoki; Grimm, Sara A; Roberts, John D et al. (2018) GATA3 zinc finger 2 mutations reprogram the breast cancer transcriptional network. Nat Commun 9:1059

Showing the most recent 10 out of 598 publications