Immunotherapy represents a promising approach to prostate cancer treatment. Recent data from our laboratory (as well as others) shows that the immune checkpoint mediated by interactions between the T cell surface molecule known as PD-1 and the molecule B7-H1 on cancer cells can inhibit an anti-tumor immune response. Thus, blockade of this interaction using monoclonal antibodies directed against PD-1 may play a role in prostate cancer treatment. Our group has also shown that anti-cancer vaccines based on attenuated Listeria Monocytogenes (LM) show a striking synergy with blockade of the PD-1 / B7-H1 checkpoint. Thus, we propose a Phase I trial combining these two agents for men with prostate cancer. Because disease burden plays a major role in the outcome of immunotherapy, we have chosen to target men with minimal disease, i.e. men who have undergone radiation therapy for high-risk disease. Both of the agents employed here are currently in Phase I testing, and those data will be used to fine-tune the combinatorial approach. The trial includes several critical immune correlates to test the central hypothesis that the combination of PD-1 blockade and PSCA-specific LM-based vaccination will """"""""break tolerance"""""""" and result in the accumulation of activated CDS T cells in the prostate gland. If successful and well tolerated, a larger phase II trial with relevant clinical endpoints will be initiated.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA058236-18
Application #
8379606
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
2014-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
18
Fiscal Year
2012
Total Cost
$198,097
Indirect Cost
$99,800
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Pradhan, Anjan K; Talukdar, Sarmistha; Bhoopathi, Praveen et al. (2017) mda-7/IL-24 Mediates Cancer Cell-Specific Death via Regulation of miR-221 and the Beclin-1 Axis. Cancer Res 77:949-959
Zamboni, Camila G; Kozielski, Kristen L; Vaughan, Hannah J et al. (2017) Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma. J Control Release 263:18-28
Sharma, Anup; Mendonca, Janet; Ying, James et al. (2017) The prostate metastasis suppressor gene NDRG1 differentially regulates cell motility and invasion. Mol Oncol 11:655-669
Winchester, Danyelle A; Till, Cathee; Goodman, Phyllis J et al. (2017) Association between variants in genes involved in the immune response and prostate cancer risk in men randomized to the finasteride arm in the Prostate Cancer Prevention Trial. Prostate 77:908-919
Guedes, Liana B; Almutairi, Fawaz; Haffner, Michael C et al. (2017) Analytic, Preanalytic, and Clinical Validation of p53 IHC for Detection of TP53 Missense Mutation in Prostate Cancer. Clin Cancer Res 23:4693-4703
Markowski, Mark C; Silberstein, John L; Eshleman, James R et al. (2017) Clinical Utility of CLIA-Grade AR-V7 Testing in Patients With Metastatic Castration-Resistant Prostate Cancer. JCO Precis Oncol 2017:
Graham, Mindy Kim; Principessa, Lorenzo; Antony, Lizamma et al. (2017) Low p16(INK4a) Expression in Early Passage Human Prostate Basal Epithelial Cells Enables Immortalization by Telomerase Expression Alone. Prostate 77:374-384
Torres, Alba; Alshalalfa, Mohammed; Tomlins, Scott A et al. (2017) Comprehensive Determination of Prostate Tumor ETS Gene Status in Clinical Samples Using the CLIA Decipher Assay. J Mol Diagn 19:475-484
Lotan, Tamara L; Torres, Alba; Zhang, Miao et al. (2017) Somatic molecular subtyping of prostate tumors from HOXB13 G84E carriers. Oncotarget 8:22772-22782
Platz, Elizabeth A; Kulac, Ibrahim; Barber, John R et al. (2017) A Prospective Study of Chronic Inflammation in Benign Prostate Tissue and Risk of Prostate Cancer: Linked PCPT and SELECT Cohorts. Cancer Epidemiol Biomarkers Prev 26:1549-1557

Showing the most recent 10 out of 725 publications