Telomerase is expressed in almost all cancer cells, including lung cancer, but it is not expressed in most normal cells, except in a small fraction of stem cells. Telomerase activity is needed to maintain the ends of linear chromosomes that become shortened as part of pre-neoplastic progression. Shortened telomeres and high telomerase activity almost always correlate with cancer severity in the lung. Our previous results have documented that a small molecule inhibitor of telomerase, GRN163L, can effectively prevent lung cancer metastasis in experimental xenograft mouse models. We hypothesize that there may be a window of therapeutic opportunity to eliminate residual lung cancer cells in patients without adversely compromising normal stem cell function. Our long-term goal is to determine the most effective way to combine standard chemotherapy with telomerase inhibitors clinically so as to prevent or prolong the time to relapse or progression of patients with advanced lung cancer as well as prevent recurrences in early stage non-small cell lung cancer after standard surgical resection. To accomplish this goal our specific aims are as follows:
Aim 1) To complete a Phase I sequential cohort, dose escalation trial to determine the safety, tolerability, and maximum tolerated dosage of weekly administered GRN163L in combination with paclitaxel and carboplatin in patients with advanced or metastatic non-small cell lung cancer. We will include correlative studies on circulating tumor cells (CTC) to determine if telomerase is inhibited and if the absolute number of CTCs decreases.
Aim 2) To determine if the combination of telomerase inhibitors with additional chemotherapeutic agents results in anti-lung cancer effects in preclinical models.
Aim 3) To determine if the telomerase inhibitor, GRN163L, targets the putative stem cell subpopulation of lung cancer cells.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
United States
Zip Code
Wen, Chi-Pang; Zhang, Fanmao; Liang, Dong et al. (2015) The ability of bilirubin in identifying smokers with higher risk of lung cancer: a large cohort study in conjunction with global metabolomic profiling. Clin Cancer Res 21:193-200
Chiappori, A A; Kolevska, T; Spigel, D R et al. (2015) A randomized phase II study of the telomerase inhibitor imetelstat as maintenance therapy for advanced non-small-cell lung cancer. Ann Oncol 26:354-62
Mender, Ilgen; Gryaznov, Sergei; Dikmen, Z Gunnur et al. (2015) Induction of telomere dysfunction mediated by the telomerase substrate precursor 6-thio-2'-deoxyguanosine. Cancer Discov 5:82-95
Kim, Eric S; Ye, Yuanqing; Vaporciyan, Ara A et al. (2015) Telomere length and recurrence risk after curative resection in patients with early-stage non-small-cell lung cancer: a prospective cohort study. J Thorac Oncol 10:302-8
Fujimoto, Junya; Wistuba, Ignacio I (2014) Current concepts on the molecular pathology of non-small cell lung carcinoma. Semin Diagn Pathol 31:306-13
Ludlow, Andrew T; Robin, Jerome D; Sayed, Mohammed et al. (2014) Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution. Nucleic Acids Res 42:e104
Lin, Steven H; Wang, Jing; Saintigny, Pierre et al. (2014) Genes suppressed by DNA methylation in non-small cell lung cancer reveal the epigenetics of epithelial-mesenchymal transition. BMC Genomics 15:1079
Yang, Yanan; Ahn, Young-Ho; Chen, Yulong et al. (2014) ZEB1 sensitizes lung adenocarcinoma to metastasis suppression by PI3K antagonism. J Clin Invest 124:2696-708
Holohan, Brody; Wright, Woodring E; Shay, Jerry W (2014) Cell biology of disease: Telomeropathies: an emerging spectrum disorder. J Cell Biol 205:289-99
Osborne, Jihan K; Guerra, Marcy L; Gonzales, Joshua X et al. (2014) NeuroD1 mediates nicotine-induced migration and invasion via regulation of the nicotinic acetylcholine receptor subunits in a subset of neural and neuroendocrine carcinomas. Mol Biol Cell 25:1782-92

Showing the most recent 10 out of 647 publications