Developing Personalized Medicine for Lung Cancer. The University of Texas SPORE in Lung Cancer represents a unique collaboration between the University of Texas Southwestern Medical Center (UTSW) and the University of Texas MD Anderson Cancer Center (MDACC) both of which have outstanding Strengths in lung cancer translational research. The overarching goal of the SPORE is to develop new experimental paradigms leading to personalized medicine approaches for lung cancer based on a molecular understanding of lung cancers in individual patients, and using this information to select the therapy ("personalize") of each NSCLC patient's treatment. The SPORE builds on a 16 year productive history and incorporates recent advances made by SPORE investigators and others in lung cancer genomics, as well as important new advances in identifying and understanding lung cancer "acquired vulnerabilities" (synthetic lethalities). Together this will provide a more complete mechanistic understanding of the molecular findings so they can be applied to patients. These advances include novel approaches to functionally classify lung cancer by determining precisely the acquired vulnerabilities of each tumor, studying new molecular classifications of NSCLC related mRNA expression and DNA mutational "clades" and their functional characteristics, developing tools for CLIA certifiable molecular classification tests, preclinical model systems for testing the value of these new classification schemes, and a large legacy of molecular and clinical annotated datasets of lung cancers for retrospective analyses. The SPORE is composed of 4 projects: #1. Personalized medicine for NSCLC based on molecular portraits/"clades";#2. Epidemiologic study of the role miR polymorphisms for predicting risk of lung cancer development and recurrence;#3. Therapeutic targeting of PI3K and MEK in mutant KRAS driven lung cancer for radiosensitization and blocking metastases;and #4. Therapeutic targeting of telomerase dependence on maintaining telomeres in lung cancer stem cells. In addition there are three cores: A. Administrative (including patient advocates), B. Molecular pathology, and C. Biostatistics-bioinformatics. The SPORE has some of the leading lung cancer translational investigators in the world in addition to a multidisciplinry group of clinical and laboratory scientists as well as a cadre of experienced patient advocates. The projects planned in this SPORE application will provide a new functional classification of lung cancer therapeutics, and the opportunity to change the face of NSCLC therapy.

Public Health Relevance

This SPORE in Lung Cancer assembles a multidisciplinary team of clinical and basic scientists from two leading lung cancer research institutions (UTSW and MDACC) to develop new ways to diagnose and treat lung cancer based on a rationale understanding of its molecular underpinnings and thus provide new personalized medicine for lung cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA070907-16A1
Application #
8738108
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (M1))
Program Officer
Ujhazy, Peter
Project Start
1996-09-30
Project End
2019-08-31
Budget Start
2014-09-23
Budget End
2015-08-31
Support Year
16
Fiscal Year
2014
Total Cost
$2,161,999
Indirect Cost
$433,224
Name
University of Texas Sw Medical Center Dallas
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Tu, Huakang; Heymach, John V; Wen, Chi-Pang et al. (2016) Different dietary patterns and reduction of lung cancer risk: A large case-control study in the U.S. Sci Rep 6:26760
Jafri, Mohammad A; Ansari, Shakeel A; Alqahtani, Mohammed H et al. (2016) Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med 8:69
Tong, Pan; Diao, Lixia; Shen, Li et al. (2016) Selecting Reliable mRNA Expression Measurements Across Platforms Improves Downstream Analysis. Cancer Inform 15:81-9
Hao, Chuncheng; Shao, Ruping; Raju, Uma et al. (2016) Accumulation of RNA-dependent protein kinase (PKR) in the nuclei of lung cancer cells mediates radiation resistance. Oncotarget 7:38235-38242
Guijarro-Muñoz, Irene; Roarty, Emily B; Heymach, John V (2016) Bevacizumab beyond disease progression for advanced non-small cell lung cancer: Does persistence have its rewards? Cancer 122:1047-9
Schabath, M B; Welsh, E A; Fulp, W J et al. (2016) Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene 35:3209-16
Mak, Milena P; Tong, Pan; Diao, Lixia et al. (2016) A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-to-Mesenchymal Transition. Clin Cancer Res 22:609-20
Kundu, S T; Byers, L A; Peng, D H et al. (2016) The miR-200 family and the miR-183~96~182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers. Oncogene 35:173-86
Hensley, Christopher T; Faubert, Brandon; Yuan, Qing et al. (2016) Metabolic Heterogeneity in Human Lung Tumors. Cell 164:681-94
Bendris, Nawal; Stearns, Carrie J S; Reis, Carlos R et al. (2016) Sorting nexin 9 negatively regulates invadopodia formation and function in cancer cells. J Cell Sci 129:2804-16

Showing the most recent 10 out of 908 publications