In the previously review period we completed a Phase I and II clinical trial targeting telomerase in non-small cell lung cancer (NSCLC). The results of these trials validated modulating telomere biology as an important target in lung cancer. NSCLC patients with short telomeres have poorer progression free and overall survival compared to patients with longer telomeres. In our completed Phase II trial we determined that the patients with the shortest telomeres trended to having better overall responses to our telomerase inhibitor. These results have encouraged us to pursue other novel mechanisms to modulate telomere biology and this is the focus of this renewal project. We also have been conducting preclinical studies on cancer stem cell biomarkers in NSCLC. We have identified ALDH1A1 and ALDH1A3 as candidate lung cancer stem cell biomarkers whose expression correlates with a poor prognosis in lung cancer patients with resected Stage I disease. These putative cancer stem cell populations are telomerase positive with activated Wnt and Hh activated pathways and we have experimental support for the hypothesize that our telomerase inhibitors not only target the bulk of the lung cancer cells but also the stem cell pool. We also have specific inhibitors against ALDH and will test these for reducing clonogenicity and tumorigenicity in direct (never in cell culture) xenografts and in ROCK inhibitor established primary lung cancers. We have a strong commitment and proven track record of being able to advance telomerase inhibitors to clinical trials. We will now progress our patented telomerase inhibitors (telomere modulators) and stem cell candidate therapies. This will include a WNT inhibitor, IWR-1 that targets tankyrase (PARP5A), a telomere associated protein. We will also advance 6-thio-2'deoxyguanosine (6-thio-dG) that is a nucleoside-based telomerase substrate. Both 6-thio-dG and IWR-1 treatments show increased specificity to telomerase expressing cancer cells over normal telomerase silent cells. Both lead to telomere shortening and reduced in vitro and in vivo cell growth. Our long-term goal is to maximize telomere shortening or uncapping and to determine the most effective way to use these SPORE developed inhibitors clinically in patients with NSCLC.

Public Health Relevance

The ability of cancer cells to divide indefinitely is one of the key hallmarks of cancer. Telomerase is the enzyme that permits indefinite divisions in all stages of lung adenocarcinoma. We propose to advance our preclinical studies with two patented home institution developed novel inhibitors as well as cancer stem cell inhibitors and to advance these to clinical trials in lung cancer patients during the next review period.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
United States
Zip Code
Tu, Huakang; Heymach, John V; Wen, Chi-Pang et al. (2016) Different dietary patterns and reduction of lung cancer risk: A large case-control study in the U.S. Sci Rep 6:26760
Jafri, Mohammad A; Ansari, Shakeel A; Alqahtani, Mohammed H et al. (2016) Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med 8:69
Tong, Pan; Diao, Lixia; Shen, Li et al. (2016) Selecting Reliable mRNA Expression Measurements Across Platforms Improves Downstream Analysis. Cancer Inform 15:81-9
Hao, Chuncheng; Shao, Ruping; Raju, Uma et al. (2016) Accumulation of RNA-dependent protein kinase (PKR) in the nuclei of lung cancer cells mediates radiation resistance. Oncotarget 7:38235-38242
Guijarro-Muñoz, Irene; Roarty, Emily B; Heymach, John V (2016) Bevacizumab beyond disease progression for advanced non-small cell lung cancer: Does persistence have its rewards? Cancer 122:1047-9
Schabath, M B; Welsh, E A; Fulp, W J et al. (2016) Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene 35:3209-16
Kundu, S T; Byers, L A; Peng, D H et al. (2016) The miR-200 family and the miR-183~96~182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers. Oncogene 35:173-86
Mak, Milena P; Tong, Pan; Diao, Lixia et al. (2016) A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-to-Mesenchymal Transition. Clin Cancer Res 22:609-20
Bendris, Nawal; Stearns, Carrie J S; Reis, Carlos R et al. (2016) Sorting nexin 9 negatively regulates invadopodia formation and function in cancer cells. J Cell Sci 129:2804-16
Hensley, Christopher T; Faubert, Brandon; Yuan, Qing et al. (2016) Metabolic Heterogeneity in Human Lung Tumors. Cell 164:681-94

Showing the most recent 10 out of 908 publications