At the fime of diagnosis, most epithelial ovarian cancers (EOCs) are no longer dependent on single genefic determinants for growth and/or survival. Therefore, targeted therapies used as single agents are not likely to be effective in this disease. We hypothesized that focused second site lethality screens performed using a cogently designed siRNA library would help identify critical cooperating oncogenic pathways that could be targeted using combinations of novel biologies. We have used RNAi approaches to identify candidates that selectively enhance killing by EGFR-inhibitors, such as erlofinib and cetuximab, and by the Src-targefing agent, dasafinib (also known as BMS-354825 or Sprycel""""""""). We have used bioinformafics approaches to map the pattern of hits back to a network of interacting signaling proteins. This has already revealed suggesfive clusters of very closely interacting proteins, implying we have identified key survival nodes controlling resistance to drug treatment. In two cases, we have been able to exploit this information to develop novel, synergizing combinations of targeted therapeutic agents. The overall objecfives going forward are to take the genes obtained through our siRNA screens, continue to map the sensitization network for targeted therapeutics relevant to EOC, and to design meaningful combinafions of siRNAs with drugs, or drugs with drugs, that can be rapidly translated to the clinic. The four Aims proposed will systemafically develop our preliminary studies to identify productive targets of co- inhibifion, with the ulfimate goal of identifying new drug combinations that will greatly enhance the treatment of women with EOC. Hence, Aim 1 will complete the inifial hit validafion process, create a """"""""master plate"""""""" of individual hits and use this master plate of siRNAs to evaluate efficacy of the siRNAs in mulfiple EOC cell lines. In Ainfi 2, we will explore the expression patterns of proteins and transcripts for genes identified through hits in patient samples, to assess their clinical relevance.
In Aim 3 we will perform animal-based experiments to further test supersensitizing combinafions of drugs and siRNAs.
In Aim 4 we will use the combined results of this analysis both to nominate new targets for drug development and to inifiate clinical trials using combined molecular targeted agents. We believe that this cutfing-edge approach will yield a paradigm that can subsequently be applied for mulfiple therapeutic applicafions.

Public Health Relevance

Future clinical studies will need to explore schedules and combinafions of treatments that opfimize therapeufic results of existing agents, but at the same fime novel druggable targets must also be found. The studies proposed offer an unprecedented opportunity to employ a functional approach to identify crifical drug response-modifying genes that can be therapeufically targeted to improve ovarian cancer treatment outcomes with contemporary agents such as dasafinib and cetuximab, with or without the front line chemotherapeutic agents, plafinum and paclitaxel.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Fox Chase Cancer Center
United States
Zip Code
Yang, Lu; Zhang, Youyou; Shan, Weiwei et al. (2017) Repression of BET activity sensitizes homologous recombination-proficient cancers to PARP inhibition. Sci Transl Med 9:
Beck, Tim N; Smith, Chad H; Flieder, Douglas B et al. (2017) Head and neck squamous cell carcinoma: Ambiguous human papillomavirus status, elevated p16, and deleted retinoblastoma 1. Head Neck 39:E34-E39
Skates, Steven J; Greene, Mark H; Buys, Saundra S et al. (2017) Early Detection of Ovarian Cancer using the Risk of Ovarian Cancer Algorithm with Frequent CA125 Testing in Women at Increased Familial Risk - Combined Results from Two Screening Trials. Clin Cancer Res 23:3628-3637
Zhang, Dongmei; Zhang, Gao; Hu, Xiaowen et al. (2017) Oncogenic RAS Regulates Long Noncoding RNA Orilnc1 in Human Cancer. Cancer Res 77:3745-3757
Rebbeck, Timothy R; Friebel, Tara M; Mitra, Nandita et al. (2016) Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women. Breast Cancer Res 18:112
Zhong, Xiaomin; Zheng, Lan; Shen, Jianfeng et al. (2016) Suppression of MicroRNA 200 Family Expression by Oncogenic KRAS Activation Promotes Cell Survival and Epithelial-Mesenchymal Transition in KRAS-Driven Cancer. Mol Cell Biol 36:2742-2754
Beck, Tim N; Golemis, Erica A (2016) Genomic insights into head and neck cancer. Cancers Head Neck 1:
Zhang, Youyou; Feng, Yi; Hu, Zhongyi et al. (2016) Characterization of Long Noncoding RNA-Associated Proteins by RNA-Immunoprecipitation. Methods Mol Biol 1402:19-26
Prudnikova, T Y; Villamar-Cruz, O; Rawat, S J et al. (2016) Effects of p21-activated kinase 1 inhibition on 11q13-amplified ovarian cancer cells. Oncogene 35:2178-85
Beck, Tim N; Georgopoulos, Rachel; Shagisultanova, Elena I et al. (2016) EGFR and RB1 as Dual Biomarkers in HPV-Negative Head and Neck Cancer. Mol Cancer Ther 15:2486-2497

Showing the most recent 10 out of 317 publications