The progressive growth of primary ovarian cancer and metastasis is dependent on development of an adequate blood supply (angiogenesis). Vascular endothelial growth factor (VEGF) plays a critical role in angiogenesis and consequent ovarian cancer growrth and progression. VEGF blockade has shown promise in human studies. Our pre-clinical and clinical results from the prior funding period demonstrate that a novel approach (high-affinity VEGF decoy receptor, VEGF-Trap or aflibercept) for VEGF blockade was highly effective in combination with taxane chemotherapy. However, despite initial responses, most patients eventually develop tumor progression resulting in their demise, mainly due to the development of drug resistance. The DII4 (delta-like ligand 4)/Notch signaling pathway has recently been shown to play an important role in angiogenesis including vessel maturation, pericyte recruitment, branching and cell differentiation, proliferation, survival and apoptosis. Our preliminary data indicate that when DII4 inhibition using a monoclonal antibody (DII4-mAb or REGN421) was coupled with VEGF inhibition (aflibercept), this combination strikingly reduced tumor burden and ascites, suggesting that this anti-angiogenesis regimen holds promise as a novel therapeutic modality. However, the mechanisms of its potency are not fully understood. We hypothesize that the DII4/Notch signaling pathway plays an important role in reducing the efficacy of anti-VEGF monotherapy and targeting both VEGF and DII4/Notch signaling pathway will enhance anti-angiogenic therapy. The overall goal of this proposal is to develop novel and effective strategies for targeting ovarian cancer angiogenesis. In the current proposal, we will investigate the functional significance of DII4/Notch signaling pathway in ovarian cancer by examining whether DII4 expression in ovarian cancer cells activates Notch signaling in endothelial cells and whether blockade of DII4/Notch signaling with REGN421 deregulates angiogenesis in vitro in Aim 1.
In Aim 2, we will assess the efficacy of combinatorial approaches for targeting VEGFA/EGFR/DII4/Notch signaling pathway with aflibercept and REGN421 using in vivo orthotopic ovarian cancer models. We will conduct a Phase I/lb clinical trial using the anti-DII4 monoclonal antibody REGN421 in patients with recurrent ovarian carcinoma in Aim 3. Thus, all three Aims are complementary to each other and findings of this study should allow the design of new therapeutic approaches for women with ovarian cancer

Public Health Relevance

There are limited options for treating advanced/recurrent ovarian cancer. Anti-angiogenic therapies appear to be one of the most promising for treatment strategies for ovarian and other cancers;however, despite initial responses, most patients eventually develop progressive disease. DII4/Notch signaling is increased in response to elevated VEGF levels and DII4 expression is increased in the tumor vasculature. DII4 blockade especially in combination with anti-VEGF therapy, appears to be a highly promising approach.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA083639-14
Application #
8540104
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
14
Fiscal Year
2013
Total Cost
$253,718
Indirect Cost
$66,015
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Sölétormos, György; Duffy, Michael J; Othman Abu Hassan, Suher et al. (2016) Clinical Use of Cancer Biomarkers in Epithelial Ovarian Cancer: Updated Guidelines From the European Group on Tumor Markers. Int J Gynecol Cancer 26:43-51
He, Ningning; Kim, Nayoung; Jeong, Euna et al. (2016) Glucose starvation induces mutation and lineage-dependent adaptive responses in a large collection of cancer cell lines. Int J Oncol 48:67-72
Liu, Joyce; Westin, Shannon N (2016) Rational selection of biomarker driven therapies for gynecologic cancers: The more we know, the more we know we don't know. Gynecol Oncol 141:65-71
Chen, Tenghui; Wang, Zixing; Zhou, Wanding et al. (2016) Hotspot mutations delineating diverse mutational signatures and biological utilities across cancer types. BMC Genomics 17 Suppl 2:394
Nishizuka, Satoshi S; Mills, Gordon B (2016) New era of integrated cancer biomarker discovery using reverse-phase protein arrays. Drug Metab Pharmacokinet 31:35-45
Zand, Behrouz; Previs, Rebecca A; Zacharias, Niki M et al. (2016) Role of Increased n-acetylaspartate Levels in Cancer. J Natl Cancer Inst 108:djv426
Huang, Yan; Lichtenberger, Lenard M; Taylor, Morgan et al. (2016) Antitumor and Antiangiogenic Effects of Aspirin-PC in Ovarian Cancer. Mol Cancer Ther 15:2894-2904
Hansen, Jean M; Coleman, Robert L; Sood, Anil K (2016) Targeting the tumour microenvironment in ovarian cancer. Eur J Cancer 56:131-43
Whiting, Nicholas; Hu, Jingzhe; Zacharias, Niki M et al. (2016) Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer. J Med Imaging (Bellingham) 3:036001
Yang, Hailing; Das, Partha; Yu, Yinhua et al. (2016) NDN is an imprinted tumor suppressor gene that is downregulated in ovarian cancers through genetic and epigenetic mechanisms. Oncotarget 7:3018-32

Showing the most recent 10 out of 595 publications