The central theme of Research Project 3 {RP3) is biologic discovery with selective targeted inhibitors of the two signal transduction pathways that are activated most frequently in human cancer: RAS/RAF/ERK and PI3K/AKT/MT0R. Multiple inhibitors of RAF, MEK, P13K, AKT, and mTor are now being developed for the treatment of these tumors. In this proposal. Molecular Imaging (Ml) with PET and MRI w/ill be used as a guide for understanding target inhibition and optimizing these therapeutic regimens. This work is based on recent fundamental studies from our group on pathway regulation and function;effects of inhibitors on components of these pathway;development of Ml modalities for imaging pathway inhibition and tumor response in preclinical models and patients. The recent clinical trial of the RAF inhibitor PLX4032 in melanomas with mutant BRAF was based in large part on our basic findings and resulted in an 85% clinical response rate and serves as proof of principle for the utility of targeting these pathways (NEJM 2010;363:809-19). ERK signaling drives the proliferation of tumors in which it is activated and we have shown that inhibition of the pathway can be imaged effectively with by FLT/PET (Cancer Res. 2007;67:11463-9), In contrast, PI3K/AKT/mTor signaling regulates glucose homeostasis and FDG uptake is very sensitive to mTor inhibitors. These data suggest a role for Ml both as a measure of pharmacodynamic pathway inhibition and tumor response, as well as other changes in tumor biology. For instance, in recent trials, we showed that ERK pathway inhibition induces the iodide transporter and iodine avidity of tumors with mutant BFIAF. The RPS research plan is comprised of the fallowing specific aims. SAl;.Imaging the effects of selective inhibition of P13K signaling in tumors with mutational activation of the pathway. SA2: Imaging the effects of selective inhibition of ERK signaling in tumors with mutant BRAF. SA3: Imaging the effects of combination therapy utilizing inhibitors of P13K or ERK signaling. The major goal of the project is to develop imaging as a tool for measuring the quantitative and temporal effects of targeted drugs on pathway inhibition, tumor biology and tumor growth. The inhibitors we are using are all in or about to enter trials, the major limitations of which are the inability to assess pathway inhibition or to rationally choose combinations, so we expect the findings in this project to be rapidly translated and to have a major clinical impact.

Public Health Relevance

Malignant melanoma, thyroid cancer, colon cancer and breast cancers are known to harbor mutations to key molecules that change a normal cell to a cancerous one. Recently, special drugs which disable only the mutated, cancer-producing molecules have been discovered, and early clinical results are promising. Only a portion of patients respond, and duration of treatment response is relatively short. Molecular imaging after treatment with selective drugs will be used to improve duration of response and chances of cure.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA086438-14
Application #
8725588
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
14
Fiscal Year
2014
Total Cost
$228,873
Indirect Cost
$103,651
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Cheal, Sarah M; Xu, Hong; Guo, Hong-fen et al. (2014) Preclinical evaluation of multistep targeting of diasialoganglioside GD2 using an IgG-scFv bispecific antibody with high affinity for GD2 and DOTA metal complex. Mol Cancer Ther 13:1803-12
de Biasi, Andreas R; Villena-Vargas, Jonathan; Adusumilli, Prasad S (2014) Cisplatin-induced antitumor immunomodulation: a review of preclinical and clinical evidence. Clin Cancer Res 20:5384-91
Vargas, Hebert Alberto; Wassberg, Cecilia; Fox, Josef J et al. (2014) Bone metastases in castration-resistant prostate cancer: associations between morphologic CT patterns, glycolytic activity, and androgen receptor expression on PET and overall survival. Radiology 271:220-9
Adusumilli, Prasad S (2014) Translational immunotherapeutics: chemoimmunotherapy for malignant pleural mesothelioma. Cancer 120:3268-71
Eguchi, Takashi; Kadota, Kyuichi; Park, Bernard J et al. (2014) The new IASLC-ATS-ERS lung adenocarcinoma classification: what the surgeon should know. Semin Thorac Cardiovasc Surg 26:210-22
Zhang, Hanwen; Huang, Ruimin; Pillarsetty, NagaVaraKishore et al. (2014) Synthesis and evaluation of 18F-labeled benzylguanidine analogs for targeting the human norepinephrine transporter. Eur J Nucl Med Mol Imaging 41:322-32
Cheal, Sarah M; Punzalan, Blesida; Doran, Michael G et al. (2014) Pairwise comparison of 89Zr- and 124I-labeled cG250 based on positron emission tomography imaging and nonlinear immunokinetic modeling: in vivo carbonic anhydrase IX receptor binding and internalization in mouse xenografts of clear-cell renal cell carcino Eur J Nucl Med Mol Imaging 41:985-94
Zhang, Hanwen; Huang, Ruimin; Cheung, Nai-Kong V et al. (2014) Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res 20:2182-91
Beattie, Bradley J; Pentlow, Keith S; O'Donoghue, Joseph et al. (2014) A recommendation for revised dose calibrator measurement procedures for 89Zr and 124I. PLoS One 9:e106868
Lee, Ming-Ching; Buitrago, Daniel H; Kadota, Kyuichi et al. (2014) Recent advances and clinical implications of the micropapillary histological subtype in lung adenocarcinomas. Lung Cancer Manag 3:245-253

Showing the most recent 10 out of 119 publications