Obesity has become a major health epidemic in the United States, affecting nearly 30% of the population, and it significantly increases the risk of developing a wide spectrum of diseases including cancer. Although arge studies have demonstrated a consistent link between men with a body mass index (BMI) >30 kg/m and an increased risk of death from prostate cancer (PCa), studies evaluating the risk of PCa in obese men are not conclusive. Adipose tissue functions as an endocrine organ and is a rich source of soluble proteins ncluding leptin and pigment epithelium-derived factor (PEDF). Leptin levels are elevated inobese ndividuals, and it functions to maintain normal body weight since mice null for leptin or the leptin receptor oecome obese. Leptin can also induce angiogenesis and stimulate the proliferation of androgen-insensitive PCa cells, and its levels are elevated in the serum of PCa patients with more aggressive disease. Incontrast :o leptin's tumor promoting activities, our data revealed that PEDF is a potent inhibitor of angiogenesis that can suppress PCa cancer cell growth in vivo by inducing apoptosis of the supporting vasculature. Moreover, PEDF null mice develop progressive prostatic PIN with high stromal vascularity and have increased deposition of adipose tissue in the abdominal and pelvic regions with increased leptin and leptin receptor expression in target tissues, including the prostate stroma. In PCa patients, PEDF levels in serum were significantly lower in patients with higher Gleason scores. From these data, we hypothesized that PEDF is an important negative regulator of prostate growth and of adipogenesis, in part, through negative regulation of leptin. Therefore, obesity can promote an imbalance in local and circulating leptin and PEDF levels leading to a pro-tumorigenic environment. This study intends to (a) elucidate the roles of PEDF and leptin in tumor progression and identify the signaling pathways between these molecules, (b) determine if Gleason score correlates with circulating levels of free leptin and PEDF in PCa patients, and (c) to assess if prostate tissue expression levels of leptin, PEDF and their receptors, or adipocyte density, have prognostic value. Obesity is an increasing public health problem in the United States and the risk of certain cancers are higher in obese individuals. The biology underlying the link between these two diseases remains unclear. Our preliminary studies suggest that a signaling network exists between fat cells, leptin and pigment epithelium derived factor and dysregulation of any one of these factors can promote a pro-tumorigenic environment. The studies proposed here have the potential to provide mechanistic insight into the enhanced cancer risk in obese patients and could identify new prognostic markers for prostate cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA090386-10
Application #
8444310
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
10
Fiscal Year
2013
Total Cost
$205,415
Indirect Cost
$47,871
Name
Northwestern University at Chicago
Department
Type
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Pascal, Laura E; Masoodi, Khalid Z; O'Malley, Katherine J et al. (2015) 5?-Reductase inhibition coupled with short off cycles increases survival in the LNCaP xenograft prostate tumor model on intermittent androgen deprivation therapy. J Urol 193:1388-93
Loeb, Stacy; Sanda, Martin G; Broyles, Dennis L et al. (2015) The prostate health index selectively identifies clinically significant prostate cancer. J Urol 193:1163-9
Grin, Boris; Loeb, Stacy; Roehl, Kim et al. (2015) A rare 8q24 single nucleotide polymorphism (SNP) predisposes North American men to prostate cancer and possibly more aggressive disease. BJU Int 115:101-5
Helenowski, Irene B; Demirtas, Hakan (2014) Multiple imputation of continuous data via a semiparametric probability integral transformation. J Biopharm Stat 24:359-77
Venkatasubramanian, Palamadai N; Brendler, Charles B; Plunkett, Beth A et al. (2014) Periprostatic adipose tissue from obese prostate cancer patients promotes tumor and endothelial cell proliferation: a functional and MR imaging pilot study. Prostate 74:326-35
Adams, Daniel L; Martin, Stuart S; Alpaugh, R Katherine et al. (2014) Circulating giant macrophages as a potential biomarker of solid tumors. Proc Natl Acad Sci U S A 111:3514-9
Ai, J; Pascal, L E; O'Malley, K J et al. (2014) Concomitant loss of EAF2/U19 and Pten synergistically promotes prostate carcinogenesis in the mouse model. Oncogene 33:2286-94
Pavese, Janet M; Ogden, Irene M; Voll, Eric A et al. (2014) Mitogen-activated protein kinase kinase 4 (MAP2K4) promotes human prostate cancer metastasis. PLoS One 9:e102289
Kregel, Steven; Szmulewitz, Russell Z; Vander Griend, Donald J (2014) The pluripotency factor Nanog is directly upregulated by the androgen receptor in prostate cancer cells. Prostate 74:1530-43
Wu, L; Runkle, C; Jin, H-J et al. (2014) CCN3/NOV gene expression in human prostate cancer is directly suppressed by the androgen receptor. Oncogene 33:504-13

Showing the most recent 10 out of 160 publications