The Clinical Core for the University of Pittsburgh Cancer Institute (UPCI) Lung Cancer SPORE supports the infrastructure needed to satisfy the clinical research needs of the individual SPORE translational research projects. Fulfillment of SPORE translational research aims requires access to human subjects and associated clinical outcome information and biological materials (blood and tissue). In addition, successful completion of SPORE clinical trials and other interventions requires human research conducted according to exacting standards designed to protect research subjects from research risks. The Clinical Core provides the expertise and resources needed 1) to design and complete clinical trials, 2) to recruit, characterize, and follow human subjects for translational studies of laboratory-based cancer biomarkers, and 3) to obtain blood-based and tissue-based materials in support of clinical trials and biomarker research projects. To meet these objectives, the Clinical Core articulates the following four specific aims:
Specific Aim 1 : Design and implement clinical trials and clinical studies.
Specific Aim 2 : Identify, solicit, and enroll subjects into SPORE clinical trials, patient registries, and high risk cohorts, Specific Aim 3: Collect, manage, and store high quality risk factor and clinical outcome information, and Specific Aim 4: Deliver protocol-directed interventions and collect blood and tissue samples. The Clinical Core designs and implements clinical trials through the active participation of experienced clinical investigators. To enroll subjects into SPORE clinical studies, the Clinical Core integrates with local lung cancer treatment programs and with the Pittsburgh Lung Screening Study (PLuSS), an established high risk cohort containing over 3600 current and ex-cigarette smokers. In the renewal period, the Clinical Core proposes continued serial blood and sputum collections and additional computed tomography (CT) lung cancer screenings, restricted to the high risk subset in the PLuSS Extension Study. To collect and manage research data. Clinical Core investigators receive database management support through the Biostatistical/Bioinformatics Core and organize the activities of approved research protocols pertaining to subject recruitment, data and biological sample collection, and follow-up.

Public Health Relevance

The Clinical Core will assure enrollment, treatment, and follow-up of human subjects in SPORE biospecimen collection and treatment protocols in compliance with all applicable regulations to maximize translation of SPORE research to improve lung cancer detection and treatment while protecting human subjects from harm.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
United States
Zip Code
Lugade, Amit A; Bogner, Paul N; Thatcher, Thomas H et al. (2014) Cigarette smoke exposure exacerbates lung inflammation and compromises immunity to bacterial infection. J Immunol 192:5226-35
Pu, Jiantao; Wang, Zhimin; Gu, Suicheng et al. (2014) Pulmonary fissure integrity and collateral ventilation in COPD patients. PLoS One 9:e96631
Zhou, Yu Jerry; Messmer, Michelle Nicole; Binder, Robert Julian (2014) Establishment of tumor-associated immunity requires interaction of heat shock proteins with CD91. Cancer Immunol Res 2:217-28
Gu, Suicheng; Meng, Xin; Sciurba, Frank C et al. (2014) Bidirectional elastic image registration using B-spline affine transformation. Comput Med Imaging Graph 38:306-14
Bruse, Shannon; Petersen, Hans; Weissfeld, Joel et al. (2014) Increased methylation of lung cancer-associated genes in sputum DNA of former smokers with chronic mucous hypersecretion. Respir Res 15:2
Siegfried, Jill M; Stabile, Laura P (2014) Estrongenic steroid hormones in lung cancer. Semin Oncol 41:5-16
Landreneau, Rodney J; Normolle, Daniel P; Christie, Neil A et al. (2014) Recurrence and survival outcomes after anatomic segmentectomy versus lobectomy for clinical stage I non-small-cell lung cancer: a propensity-matched analysis. J Clin Oncol 32:2449-55
Stabile, Laura P; Rothstein, Mary E; Gubish, Christopher T et al. (2014) Co-targeting c-Met and COX-2 leads to enhanced inhibition of lung tumorigenesis in a murine model with heightened airway HGF. J Thorac Oncol 9:1285-93
Siegfried, Jill M (2014) Smoking out reproductive hormone actions in lung cancer. Mol Cancer Res 12:24-31
Burns, Timothy F; Stabile, Laura P (2014) Targeting the estrogen pathway for the treatment and prevention of lung cancer. Lung Cancer Manag 3:43-52

Showing the most recent 10 out of 119 publications