There is convincing clinical evidence that the epidermal growth factor receptor (EGFR)-specific monoclonal antibody (mAb), cetuximab, is effective therapy for advanced head and neck squamous cell carcinoma (SCCHN). However, not all patients respond to cetuximab, and clinical responses are not correlated with level of EGFR expression on tumor cells. Thus, there is a need to understand why clinical responses vary among patients, in order to select those most likely to respond to cetuximab therapy. In contrast to EGFR tyrosine kinase inhibitors, the antitumor activity of cetuximab may benefit from its interactions with host's immune system, since cetuximab induces significant killing of SCCHN cells in vitro only in combination with natural killer (NK) cells and monocytes. Furthermore, in an animal model system the antitumor activity of cetuximab is enhanced by the addition of NK cells. This information has provided the rationale for our hypothesis that the antitumor activity of cetuximab is influenced by its ability to trigger an EGFR-specific cellular immune response and by the escape mechanisms SCCHN cells utilize to avoid immune recognition and destruction. In this proposal, we will first characterize in vitro the variables, which are involved in the generation of EGFR-specific cytotoxic T lymphocytes (CTL) by cetuximab. They include the polymorphism of the Fcy receptors expressed by NK cells, the EGFR expression level on SCCHN cells, and the ability of dendritic cells (DC) to cross-present tumor antigens to T cells following loading with SCCHN cells coated with cetuximab. In addition, we will characterize how the immunosuppressive activity of regulatory T cells interferes with the generation of EGFR-specific CTL as well as with their lytic activity and that of NK cells. To assess the clinical relevance of the in vitro results, we will determine how the balance between the induction of an EGFR-specific CTL response triggered by cetuximab and the immune escape mechanisms utilized by SCCHN cells impacts the clinical response to (antitumor activity of) cetuximab in SCCHN patients who will be enrolled in a trial associated with this project. The results derived from this study will have an impact on the clinical application of cetuximab-based immunotherapy in SCCHN patients by identifying predictive immune biomarkers of biological and clinical responses, optimizing the selection of patients to be treated with cetuximabbased immunotherapy and contributing to the design of interventions to enhance its efficacy. Furthermore, the principles defined with cetuximab may be applicable to other TA-specific mAb;therefore, the information derived from this translational proposal may have a broad significance for the clinical application of antibody-based immunotherapy to the treatment of malignant diseases.

Public Health Relevance

There is convincing clinical evidence that the EGFR-specific monoclonal antibody cetuximab, is effective therapy for advanced SCCHN. However, not all patients respond to cetuximab, and clinical responses are not correlated with level of EGFR expression on tumor cells. Thus, there is a need to understand why clinical responses vary among patients, in order to select those most likely to respond to cetuximab therapy. The results derived from this study will have an impact on the clinical application of cetuximab-based immunotherapy in SCCHN patients, by identifying predictive immune biomarkers of biological and clinical responsiveness, by optimizing the selection of patients to be treated with cetuximab-based immunotherapy and by contributing to the design of interventions to enhance its efficacy. Furthermore, the principles defined with cetuximab may be applicable to other TA-specific mAb;therefore the information derived from this translational may have an impact on the clinical application of antibody-based immunotherapy for the treatment of malignant diseases.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA097190-10
Application #
8707196
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
10
Fiscal Year
2014
Total Cost
$178,980
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Pollock, Netanya I; Grandis, Jennifer R (2015) HER2 as a therapeutic target in head and neck squamous cell carcinoma. Clin Cancer Res 21:526-33
Li, Jing; Jie, Hyun-Bae; Lei, Yu et al. (2015) PD-1/SHP-2 inhibits Tc1/Th1 phenotypic responses and the activation of T cells in the tumor microenvironment. Cancer Res 75:508-18
Johnson, Daniel E (2015) The ubiquitin-proteasome system: opportunities for therapeutic intervention in solid tumors. Endocr Relat Cancer 22:T1-17
Sen, Malabika; Paul, Kathleen; Freilino, Maria L et al. (2014) Systemic administration of a cyclic signal transducer and activator of transcription 3 (STAT3) decoy oligonucleotide inhibits tumor growth without inducing toxicological effects. Mol Med 20:46-56
Parikh, Rahul A; Appleman, Leonard J; Bauman, Julie E et al. (2014) Upregulation of the ATR-CHEK1 pathway in oral squamous cell carcinomas. Genes Chromosomes Cancer 53:25-37
Johnston, Paul A; Sen, Malabika; Hua, Yun et al. (2014) High-content pSTAT3/1 imaging assays to screen for selective inhibitors of STAT3 pathway activation in head and neck cancer cell lines. Assay Drug Dev Technol 12:55-79
Qian, Wei; Wang, Jingnan; Roginskaya, Vera et al. (2014) Novel combination of mitochondrial division inhibitor 1 (mdivi-1) and platinum agents produces synergistic pro-apoptotic effect in drug resistant tumor cells. Oncotarget 5:4180-94
Klein, Jonah D; Sano, Daisuke; Sen, Malabika et al. (2014) STAT3 oligonucleotide inhibits tumor angiogenesis in preclinical models of squamous cell carcinoma. PLoS One 9:e81819
Peyser, Noah D; Grandis, Jennifer R (2014) Genetic mutations in head and neck cancer: utilizing existing treatments. Pharmacogenomics 15:1553-5
Li, Changyou; Egloff, Ann Marie; Sen, Malabika et al. (2014) Caspase-8 mutations in head and neck cancer confer resistance to death receptor-mediated apoptosis and enhance migration, invasion, and tumor growth. Mol Oncol 8:1220-30

Showing the most recent 10 out of 150 publications