The tumor microenvironment plays an important role in non-Hodgkin lymphoma (NHL) and the role intratumoral immune cells play in the pathology of lymphoma has been significantly understated. Intratumoral monocytes and macrophages are particularly important and our data demonstrate that intratumoral monocytes in NHL are highly immunosuppressive and support malignant cell growth. In preliminary work, we found that suppressive monocytic cells (SMCs) are abundant within the peripheral blood and tumor microenvironment in lymphoma patients and promote the survival of lymphoma cells. SMCs protect lymphoma cells from chemotherapy-induced cell death and promote lymphoma cell engraftment into severe combined immunodeficient (SCID) mice. Furthermore, we found that SMCs within lymph nodes express immunosuppressive ligands including B7-H1 (PD-L1, CD273), inhibit normal T-cell proliferation and promote the induction of FoxP3+ regulatory T cells. These preliminary studies suggest that SMCs have an effect on both malignant NHL cells and non-malignant intratumoral T-cells. Based on our results, we hypothesize that the intersection between the immune system and the malignant cell in NHL is the SMCs. In this proposal, we plan to understand whether monocytes are specifically recruited to sites of lymphoma and which specific chemokines could be inhibited to prevent SMC migration; how lymphoma cells induce SMCs to support their malignant cell growth and to suppress the host's antitumor immunity; and whether promoting monocyte/macrophage maturation or inhibiting their interaction with other cells, particularly in the presence of monoclonal antibodies, improves their anti-tumor function. Upon completion of this project, we expect to have a greater understanding of the role of monocytes and their progeny in NHL. Collectively our findings are likely to have a major impact by leading to an effective monocyte-directed therapeutic approach for patients with lymphoma.

Public Health Relevance

The monocyte-macrophage system is critical in the host's response to pathogens and inflammation. In lymphoma patients, however, there is a significant population of immunosuppressive monocytic cells present in peripheral blood and lymph nodes that promotes the survival of malignant cells. The proposed studies will provide a comprehensive understanding of the role of suppressive monocytes in lymphoma, allowing us to intervene and modulate monocyte function on multiple levels leading to novel therapeutic approaches for lymphoma patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA097274-14
Application #
8882289
Study Section
Special Emphasis Panel (ZCA1-RPRB-7)
Project Start
Project End
2016-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
14
Fiscal Year
2015
Total Cost
$275,600
Indirect Cost
$23,814
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52246
Leelakanok, Nattawut; Geary, Sean M; Salem, Aliasger K (2018) Antitumor Efficacy and Toxicity of 5-Fluorouracil-Loaded Poly(Lactide Co-glycolide) Pellets. J Pharm Sci 107:690-697
Ghesquières, Hervé; Larrabee, Beth R; Casasnovas, Olivier et al. (2018) A susceptibility locus for classical Hodgkin lymphoma at 8q24 near MYC/PVT1 predicts patient outcome in two independent cohorts. Br J Haematol 180:286-290
Sharma, Ayush; Oishi, Naoki; Boddicker, Rebecca L et al. (2018) Recurrent STAT3-JAK2 fusions in indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. Blood 131:2262-2266
Fama, Angelo; Xiang, Jinhua; Link, Brian K et al. (2018) Human Pegivirus infection and lymphoma risk and prognosis: a North American study. Br J Haematol 182:644-653
Jalali, Shahrzad; Price-Troska, Tammy; Paludo, Jonas et al. (2018) Soluble PD-1 ligands regulate T-cell function in Waldenstrom macroglobulinemia. Blood Adv 2:1985-1997
Bachy, Emmanuel; Maurer, Matthew J; Habermann, Thomas M et al. (2018) A simplified scoring system in de novo follicular lymphoma treated initially with immunochemotherapy. Blood 132:49-58
Franqui-Machin, Reinaldo; Hao, Mu; Bai, Hua et al. (2018) Destabilizing NEK2 overcomes resistance to proteasome inhibition in multiple myeloma. J Clin Invest 128:2877-2893
Ghahramani, Grant K; Goetz, Kirsten E; Liu, Vincent (2018) Dermoscopic characterization of cutaneous lymphomas: a pilot survey. Int J Dermatol 57:339-343
Hu, G; Dasari, S; Asmann, Y W et al. (2018) Targetable fusions of the FRK tyrosine kinase in ALK-negative anaplastic large cell lymphoma. Leukemia 32:565-569
Moss, Jennifer L; Xiao, Qian; Matthews, Charles E (2018) Patterns of cancer-related health behaviors among middle-aged and older adults: Individual- and area-level socioeconomic disparities. Prev Med 115:31-38

Showing the most recent 10 out of 387 publications