Normal cellular homeostasis is maintained by a balanced regulation of protein synthesis and degradation. The ubiquitin proteasome system (UPS) is a non-lysosomal intracellular protein degradation pathway mediated via proteasome holoenzymes, ubiquitin ligases, and deubiquitylating enzymes (DUBs). Deregulation of the UPS pathway is linked to the pathogenesis of various human diseases including multiple myeloma (MM);therefore, inhibitors of UPS pathways, either at the level of proteasomal or ubiquitylating/deubiquitylating enzymes, offers great promise as a novel therapeutic strategy. In our first funding period, we characterized targeting of UPS in MM at the level of the proteasome using our in vitro and in vivo models of the MM cell in the BM milieu. We specifically elucidated the molecular and cellular mechanisms whereby proteasome inhibitors target tumor cells, host tumor interactions, and the BM microenvironment to overcome drug resistance. Our preclinical and clinical studies led to the FDA approval of Bortezomib for relapsed/refractory and newly diagnosed MM. Although Bortezomib represents a major advance, not all patients respond, and those that respond relapse. Therefore our more recent studies have defined mechanisms of resistance to proteasome inhibitors and strategies to overcome it. This work has led to second-generation proteasome inhibitors on the one hand, and scientifically-informed combination therapies on the other, leading to multiple ongoing phase III clinical trials. Our recent efforts have focused on discovery and development of small molecule inhibitors of another major component of UPS, DUBs. Our Preliminary Studies show increased expression and activity of the DUB USP7 in MM cells versus normal plasma cells, and that its inhibition triggers apoptosis even in Bortezomib resistant MM cells. The current proposal aims to investigate the hypothesis that inhibition of the UPS at the level of DUBs, upstream of the proteasome, can inhibit MM cell growth and overcome proteasome inhibitor resistance. To achieve these goals, we will pursue the following Specific Aims:
Specific Aim 1 : To characterize the role of deubiquitylating enzymes (DUBs) in MM cell growth, survival, and drug resistance.
Specific Aim 2 : To develop selective DUB inhibitors and define their in vitro mechanism of action, either alone or in combination with anti-MM agents.
Specific Aim 3 : To conduct preclinical in vivo studies and clinical trials of DUB inhibitors, either alone or in combination, in relapsed refractory MM. This new paradigm to target UPS pathways in MM, either at the level of proteasome or deubiquitylating enzymes, has great promise not only to change the natural history of MM, but also to serve as a model for targeted therapeutics in other cancers.

Public Health Relevance

This new paradigm to target UPS pathways in MM, either at the level of proteasome or deubiquitylating enzymes, has great promise not only to change the natural history of MM, but also to serve as a model for targeted therapeutics in other cancers.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA100707-11A1
Application #
8607269
Study Section
Special Emphasis Panel (ZCA1-RPRB-0 (O1))
Project Start
2003-09-01
Project End
2018-08-31
Budget Start
2013-09-18
Budget End
2014-08-31
Support Year
11
Fiscal Year
2013
Total Cost
$298,004
Indirect Cost
$116,055
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Zhang, L; Tai, Y-T; Ho, M et al. (2017) Regulatory B cell-myeloma cell interaction confers immunosuppression and promotes their survival in the bone marrow milieu. Blood Cancer J 7:e547
Jain, Salvia; Washington, Abigail; Leaf, Rebecca Karp et al. (2017) Decitabine Priming Enhances Mucin 1 Inhibition Mediated Disruption of Redox Homeostasis in Cutaneous T-Cell Lymphoma. Mol Cancer Ther 16:2304-2314
Gullà, A; Hideshima, T; Bianchi, G et al. (2017) Protein arginine methyltransferase 5 has prognostic relevance and is a druggable target in multiple myeloma. Leukemia :
Harada, T; Ohguchi, H; Grondin, Y et al. (2017) HDAC3 regulates DNMT1 expression in multiple myeloma: therapeutic implications. Leukemia 31:2670-2677
Cholujova, Danka; Bujnakova, Zdenka; Dutkova, Erika et al. (2017) Realgar nanoparticles versus ATO arsenic compounds induce in vitro and in vivo activity against multiple myeloma. Br J Haematol 179:756-771
Bouillez, A; Rajabi, H; Jin, C et al. (2017) MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene 36:4037-4046
Das, Deepika Sharma; Das, Abhishek; Ray, Arghya et al. (2017) Blockade of Deubiquitylating Enzyme USP1 Inhibits DNA Repair and Triggers Apoptosis in Multiple Myeloma Cells. Clin Cancer Res 23:4280-4289
Tagde, Ashujit; Markert, Tahireh; Rajabi, Hasan et al. (2017) Targeting MUC1-C suppresses polycomb repressive complex 1 in multiple myeloma. Oncotarget 8:69237-69249
Ray, A; Das, D S; Song, Y et al. (2017) Combination of a novel HDAC6 inhibitor ACY-241 and anti-PD-L1 antibody enhances anti-tumor immunity and cytotoxicity in multiple myeloma. Leukemia :
Song, Y; Li, S; Ray, A et al. (2017) Blockade of deubiquitylating enzyme Rpn11 triggers apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Oncogene 36:5631-5638

Showing the most recent 10 out of 388 publications