The purpose of the Administration, Communication, and Planning Core is to assure the coordination of the Dana Farber/Harvard Cancer Center (DF/HCC) Myeloma SPORE components and to provide oversight and leadership of the scientific, administrative, and fiscal aspects of the SPORE. The SPORE Directors will oversee the administrative coordination of the various clinical and laboratory studies outlined in this Program. They will integrate scientific and clinical efforts within and between Projects, and assure the translation of laboratory findings to the bedside;and conversely, the initiation of laboratory studies stemming from clinical observations. During the prior funding period, the infrastructure has been created to have seamless communication and exchange of data between SPORE sites, facilitating collaborative preclinical studies and clinical trials. Multiple joint publications, completed and ongoing clinical trials, and the translation of several novel targeted therapies from bench to bedside confirm the communication and integration of our efforts. This Core will continue to facilitate exchange of information among the SPORE members, as well as the internal and external advisory committees. It will provide clinical research nursing support for the proposed clinical trials. In addition, as in the previous funding period, a clinical study coordinator will assure appropriate sample acquisition and trafficking. The grants administrator will allocate resources in a timely and integrated fashion to facilitate successful completion of the proposed studies.
The Specific Aims of the Administration, Communication, and Planning Core are as follows: 1. To monitor research progress and plan for the future 2. To foster collaborative research within the SPORE and between SPOREs 3. To integrate the Myeloma SPORE into the DF/HCC structure 4. To provide necessary resources and fiscal oversight 5. To promote rapid dissemination of significant research findings

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA100707-11A1
Application #
8607274
Study Section
Special Emphasis Panel (ZCA1-RPRB-0 (O1))
Project Start
2003-09-01
Project End
2018-08-31
Budget Start
2013-09-18
Budget End
2014-08-31
Support Year
11
Fiscal Year
2013
Total Cost
$242,200
Indirect Cost
$94,323
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Zhang, L; Tai, Y-T; Ho, M et al. (2017) Regulatory B cell-myeloma cell interaction confers immunosuppression and promotes their survival in the bone marrow milieu. Blood Cancer J 7:e547
Jain, Salvia; Washington, Abigail; Leaf, Rebecca Karp et al. (2017) Decitabine Priming Enhances Mucin 1 Inhibition Mediated Disruption of Redox Homeostasis in Cutaneous T-Cell Lymphoma. Mol Cancer Ther 16:2304-2314
Gullà, A; Hideshima, T; Bianchi, G et al. (2017) Protein arginine methyltransferase 5 has prognostic relevance and is a druggable target in multiple myeloma. Leukemia :
Harada, T; Ohguchi, H; Grondin, Y et al. (2017) HDAC3 regulates DNMT1 expression in multiple myeloma: therapeutic implications. Leukemia 31:2670-2677
Cholujova, Danka; Bujnakova, Zdenka; Dutkova, Erika et al. (2017) Realgar nanoparticles versus ATO arsenic compounds induce in vitro and in vivo activity against multiple myeloma. Br J Haematol 179:756-771
Bouillez, A; Rajabi, H; Jin, C et al. (2017) MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene 36:4037-4046
Das, Deepika Sharma; Das, Abhishek; Ray, Arghya et al. (2017) Blockade of Deubiquitylating Enzyme USP1 Inhibits DNA Repair and Triggers Apoptosis in Multiple Myeloma Cells. Clin Cancer Res 23:4280-4289
Tagde, Ashujit; Markert, Tahireh; Rajabi, Hasan et al. (2017) Targeting MUC1-C suppresses polycomb repressive complex 1 in multiple myeloma. Oncotarget 8:69237-69249
Ray, A; Das, D S; Song, Y et al. (2017) Combination of a novel HDAC6 inhibitor ACY-241 and anti-PD-L1 antibody enhances anti-tumor immunity and cytotoxicity in multiple myeloma. Leukemia :
Song, Y; Li, S; Ray, A et al. (2017) Blockade of deubiquitylating enzyme Rpn11 triggers apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Oncogene 36:5631-5638

Showing the most recent 10 out of 388 publications