The Mayo Clinic SPORE in Pancreatic Cancer has built one of the best environments for translational researchers who are committed to the goal of reducing the incidence and mortality of this devastating malignancy.
Our aims are to: 1) Provide the scientific leadership and organization to sustain and support outstanding translational pancreatic cancer research;2) Provide the organizational infrastructure to facilitate communication and promote interactions among SPORE investigators and the larger research community;3) Provide resources to develop innovative research projects in translational pancreatic cancer research;4) Foster career development in translational pancreatic cancer research;and 5) Assure excellence of research through a rigorous internal review process of the SPORE research programs and projects, with periodic review and support from a panel of outstanding external advisors. Over the past funding period, tremendous progress has been made in creating an infrastructure that nurtures the conduct of innovative research and interdisciplinary interactions, and which has attracted committed scientists and clinicians. Mayo Clinic sees -570 patients with pancreatic cancer annually, constituting 1.5% of all pancreatic cancer cases in the U.S. Four cores (Administrative Core, Biostatistics Core, Clinical Research Core, and Tissue Core) will support research in the SPORE. Broad institutional support for investigators and the research infrastructure will facilitate the translation of scientific discovery to the patient. Project 1, Regulation of Pancreatic Cancer Cell Proliferation and Survival by GSK-3 (led by Drs. Billadeau &Kim) will study how GSK-3P is over-expressed in pancreatic cancer, evaluate it as a novel chemotherapeutic target in mouse models, and study a GSK-3 inhibitor in patients. Project 2, Pancreatic Cancer-associated Diabetes (PaCDM): Pathogenesis and Biomarkers (led by Drs. Chari &Klee) will examine if B-cell dysfunction is an early defect in PaCDM, determine if adrenomedullin is the mediator of PaCDM: and develop and validate a predictive model for PaC among new-onset diabetics. Project 3, Hedgehog and EGF Pathway Interaction: A Novel Approach For A Multi-Target Therapy in Pancreatic Cancer (led by Drs. Fernandez-Zapico &Erlichman) will study the mechanisms underlying the HH-EGF pathway interaction;determine response to HH-EGF combined therapy with new imaging markers, and perform a phase l/ll trial. Project 4, Development of Immune-Modulating Therapies Delivered Directly to the Pancreatic Tumor Site (led by Drs. Mukherjee &Alberts) will optimize a MUC1-based vaccine in the PDA.MUC1 Tg mouse;assess immune status of pancreatic cancer patients to determine if the immune tolerance and surveillance mechanisms observed in the PDA mouse appropriately resemble human patients;and conduct a Phase I trial utilizing a MUC1-peptide based vaccine. In summary, this competing renewal application will continue our strong trajectory of facilitating translational research in pancreatic cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA102701-09
Application #
8138603
Study Section
Special Emphasis Panel (ZCA1-GRB-I (M1))
Program Officer
Agarwal, Rajeev K
Project Start
2003-09-29
Project End
2013-08-31
Budget Start
2011-09-01
Budget End
2012-08-31
Support Year
9
Fiscal Year
2011
Total Cost
$2,185,000
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Antwi, Samuel O; Bamlet, William R; Pedersen, Katrina S et al. (2018) Pancreatic Cancer Risk is Modulated by Inflammatory Potential of Diet and ABO Genotype: A Consortia-based Evaluation and Replication Study. Carcinogenesis :
Klein, Alison P; Wolpin, Brian M; Risch, Harvey A et al. (2018) Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat Commun 9:556
Antwi, Samuel O; Petersen, Gloria M (2018) Leukocyte Telomere Length and Pancreatic Cancer Risk: Updated Epidemiologic Review. Pancreas 47:265-271
Penheiter, Alan R; Deelchand, Dinesh K; Kittelson, Emily et al. (2018) Identification of a pyruvate-to-lactate signature in pancreatic intraductal papillary mucinous neoplasms. Pancreatology 18:46-53
Nagpal, Sajan Jiv Singh; Bamlet, William R; Kudva, Yogish C et al. (2018) Comparison of Fasting Human Pancreatic Polypeptide Levels Among Patients With Pancreatic Ductal Adenocarcinoma, Chronic Pancreatitis, and Type 2 Diabetes Mellitus. Pancreas 47:738-741
Wolf, Susan M; Scholtes, Emily; Koenig, Barbara A et al. (2018) Pragmatic Tools for Sharing Genomic Research Results with the Relatives of Living and Deceased Research Participants. J Law Med Ethics 46:87-109
Tamura, Koji; Yu, Jun; Hata, Tatsuo et al. (2018) Mutations in the pancreatic secretory enzymes CPA1 and CPB1 are associated with pancreatic cancer. Proc Natl Acad Sci U S A 115:4767-4772
Chaffee, Kari G; Oberg, Ann L; McWilliams, Robert R et al. (2018) Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. Genet Med 20:119-127
Shroff, Rachna T; Hendifar, Andrew; McWilliams, Robert R et al. (2018) Rucaparib Monotherapy in Patients With Pancreatic Cancer and a Known Deleterious BRCA Mutation. JCO Precis Oncol 2018:
McWilliams, Robert R; Wieben, Eric D; Chaffee, Kari G et al. (2018) CDKN2A Germline Rare Coding Variants and Risk of Pancreatic Cancer in Minority Populations. Cancer Epidemiol Biomarkers Prev 27:1364-1370

Showing the most recent 10 out of 336 publications