The Mayo Clinic SPORE in Pancreatic Cancer has built one of the best environments for translational researchers who are committed to the goal of reducing the incidence and mortality of this devastating malignancy.
Our aims are to: 1) Provide the scientific leadership and organization to sustain and support outstanding translational pancreatic cancer research;2) Provide the organizational infrastructure to facilitate communication and promote interactions among SPORE investigators and the larger research community;3) Provide resources to develop innovative research projects in translational pancreatic cancer research;4) Foster career development in translational pancreatic cancer research;and 5) Assure excellence of research through a rigorous internal review process of the SPORE research programs and projects, with periodic review and support from a panel of outstanding external advisors. Over the past funding period, tremendous progress has been made in creating an infrastructure that nurtures the conduct of innovative research and interdisciplinary interactions, and which has attracted committed scientists and clinicians. Mayo Clinic sees -570 patients with pancreatic cancer annually, constituting 1.5% of all pancreatic cancer cases in the U.S. Four cores (Administrative Core, Biostatistics Core, Clinical Research Core, and Tissue Core) will support research in the SPORE. Broad institutional support for investigators and the research infrastructure will facilitate the translation of scientific discovery to the patient. Project 1, Regulation of Pancreatic Cancer Cell Proliferation and Survival by GSK-3 (led by Drs. Billadeau &Kim) will study how GSK-3P is over-expressed in pancreatic cancer, evaluate it as a novel chemotherapeutic target in mouse models, and study a GSK-3 inhibitor in patients. Project 2, Pancreatic Cancer-associated Diabetes (PaCDM): Pathogenesis and Biomarkers (led by Drs. Chari &Klee) will examine if B-cell dysfunction is an early defect in PaCDM, determine if adrenomedullin is the mediator of PaCDM: and develop and validate a predictive model for PaC among new-onset diabetics. Project 3, Hedgehog and EGF Pathway Interaction: A Novel Approach For A Multi-Target Therapy in Pancreatic Cancer (led by Drs. Fernandez-Zapico &Erlichman) will study the mechanisms underlying the HH-EGF pathway interaction;determine response to HH-EGF combined therapy with new imaging markers, and perform a phase l/ll trial. Project 4, Development of Immune-Modulating Therapies Delivered Directly to the Pancreatic Tumor Site (led by Drs. Mukherjee &Alberts) will optimize a MUC1-based vaccine in the PDA.MUC1 Tg mouse;assess immune status of pancreatic cancer patients to determine if the immune tolerance and surveillance mechanisms observed in the PDA mouse appropriately resemble human patients;and conduct a Phase I trial utilizing a MUC1-peptide based vaccine. In summary, this competing renewal application will continue our strong trajectory of facilitating translational research in pancreatic cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-I (M1))
Program Officer
Agarwal, Rajeev K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Chini, Claudia C S; Espindola-Netto, Jair M; Mondal, Gourish et al. (2016) SIRT1-Activating Compounds (STAC) Negatively Regulate Pancreatic Cancer Cell Growth and Viability Through a SIRT1 Lysosomal-Dependent Pathway. Clin Cancer Res 22:2496-507
Murphy, Stephen J; Hart, Steven N; Halling, Geoffrey C et al. (2016) Integrated Genomic Analysis of Pancreatic Ductal Adenocarcinomas Reveals Genomic Rearrangement Events as Significant Drivers of Disease. Cancer Res 76:749-61
Chaiteerakij, Roongruedee; Petersen, Gloria M; Bamlet, William R et al. (2016) Metformin Use and Survival of Patients With Pancreatic Cancer: A Cautionary Lesson. J Clin Oncol 34:1898-904
Cao, H; Eppinga, R D; Razidlo, G L et al. (2016) Stromal fibroblasts facilitate cancer cell invasion by a novel invadopodia-independent matrix degradation process. Oncogene 35:1099-110
Hu, Chunling; Hart, Steven N; Bamlet, William R et al. (2016) Prevalence of Pathogenic Mutations in Cancer Predisposition Genes among Pancreatic Cancer Patients. Cancer Epidemiol Biomarkers Prev 25:207-11
McWilliams, Robert R; Maisonneuve, Patrick; Bamlet, William R et al. (2016) Risk Factors for Early-Onset and Very-Early-Onset Pancreatic Adenocarcinoma: A Pancreatic Cancer Case-Control Consortium (PanC4) Analysis. Pancreas 45:311-6
Carr, Ryan M; Fernandez-Zapico, Martin E (2016) Pancreatic cancer microenvironment, to target or not to target? EMBO Mol Med 8:80-2
Wang, Jianbo; Galvao, Joana; Beach, Krista M et al. (2016) Novel Roles and Mechanism for Krüppel-like Factor 16 (KLF16) Regulation of Neurite Outgrowth and Ephrin Receptor A5 (EphA5) Expression in Retinal Ganglion Cells. J Biol Chem 291:18084-95
Lopez, Angelica P; Kugelman, Jeffrey R; Garcia-Rivera, Jose et al. (2016) The Structure-Specific Recognition Protein 1 Associates with Lens Epithelium-Derived Growth Factor Proteins and Modulates HIV-1 Replication. J Mol Biol 428:2814-31
Lakshminarayanan, Vani; Supekar, Nitin T; Wei, Jie et al. (2016) MUC1 Vaccines, Comprised of Glycosylated or Non-Glycosylated Peptides or Tumor-Derived MUC1, Can Circumvent Immunoediting to Control Tumor Growth in MUC1 Transgenic Mice. PLoS One 11:e0145920

Showing the most recent 10 out of 242 publications