Our goal is to target novel immune-modulating agents directly to the pancreatic tumor site using a tumorspecific MUC1 antibody as a carrier. This will be administered in combination with the MUC1/KRAS peptide vaccine and low-dose gemcitabine. MUC1 and Kras are over expressed in 90% of pancreatic ductal adenocarcinomas (PDA) and have long been targets for therapeutic interventions. Thus far, cancer vaccines have not been clinically as successful as one had hoped for. Vaccines have failed to generate long-term immune memory against the tumor antigens because tumors have adopted ways to escape immune recognition and killing. Several new agents that can reverse immune evasion have been tested with modest clinical responses probably because the agents were administered systemically and may have never reached the tumor site. We hypothesize that by directly delivering the immune modulating agents to the pancreatic tumor site and combining this with a multi-peptide MUC1/Kras vaccine, we can generate a robust anti-tumor response with a strong memory response. The treatment will affect both localized and disseminated tumors, and strong memory responses will prevent recurrence. We will test the hypothesis in an appropriate mouse model of spontaneous PDA that clearly resembles the human disease.
Our specific aims are: 1) To optimize a MUC1/Kras-based vaccine in the PDA X MUCLTg mice by immobilizing four immune modulating agents directly to the tumor site by chemically conjugating the agents to a tumor-specific MUC1 monoclonal antibody. This antibody will home not only to the primary pancreas tumor but also to the metastatic tumor sites that over express MUC1;2) To assess immune status and naturally occurring MUC1 - specific cellular and humoral immune responses in pancreatic cancer patients.
This aim will provide a solid database as to the roles of tumor-associated tolerizing factors and anti-MUCI responses in tumor progression, metastasis, survival, and prognosis and 3) A Phase I trial for the treatment of pancreas cancer. This trial utilizes a MUC1-pep1ide based vaccine, celecoxib, gemcitabine, and external beam radiation in patients with locally advanced pancreatic cancer. We will monitor the immune tolerance mechanisms, and the immune responses before, during, and after treatment. Future: This study could lead to development of a new combination modality for the treatment of localized and disseminated pancreas tumors.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
3P50CA102701-10W1
Application #
8719563
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
2013-09-12
Project End
2014-08-31
Budget Start
2013-09-12
Budget End
2014-08-31
Support Year
10
Fiscal Year
2013
Total Cost
$128,024
Indirect Cost
$43,024
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Orozco, Carlos A; Martinez-Bosch, Neus; Guerrero, Pedro E et al. (2018) Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk. Proc Natl Acad Sci U S A 115:E3769-E3778
Radecki Breitkopf, Carmen; Wolf, Susan M; Chaffee, Kari G et al. (2018) Attitudes Toward Return of Genetic Research Results to Relatives, Including After Death: Comparison of Cancer Probands, Blood Relatives, and Spouse/Partners. J Empir Res Hum Res Ethics 13:295-304
Antwi, Samuel O; Fagan, Sarah E; Chaffee, Kari G et al. (2018) Risk of Different Cancers Among First-degree Relatives of Pancreatic Cancer Patients: Influence of Probands' Susceptibility Gene Mutation Status. J Natl Cancer Inst :
Cobo, Isidoro; Martinelli, Paola; Flández, Marta et al. (2018) Transcriptional regulation by NR5A2 links differentiation and inflammation in the pancreas. Nature 554:533-537
Razidlo, Gina L; Burton, Kevin M; McNiven, Mark A (2018) Interleukin-6 promotes pancreatic cancer cell migration by rapidly activating the small GTPase CDC42. J Biol Chem 293:11143-11153
Chaker, Mahmoud; Minden, Audrey; Chen, Suzie et al. (2018) Rho GTPase effectors and NAD metabolism in cancer immune suppression. Expert Opin Ther Targets 22:9-17
Sugimoto, Motokazu; Farnell, Michael B; Nagorney, David M et al. (2018) Decreased Skeletal Muscle Volume Is a Predictive Factor for Poorer Survival in Patients Undergoing Surgical Resection for Pancreatic Ductal Adenocarcinoma. J Gastrointest Surg 22:831-839
Danai, Laura V; Babic, Ana; Rosenthal, Michael H et al. (2018) Altered exocrine function can drive adipose wasting in early pancreatic cancer. Nature 558:600-604
Paradise, Brooke D; Barham, Whitney; Fernandez-Zapico, Martín E (2018) Targeting Epigenetic Aberrations in Pancreatic Cancer, a New Path to Improve Patient Outcomes? Cancers (Basel) 10:
Hogan, Kelly A; Cho, Dong Seong; Arneson, Paige C et al. (2018) Tumor-derived cytokines impair myogenesis and alter the skeletal muscle immune microenvironment. Cytokine 107:9-17

Showing the most recent 10 out of 336 publications