In this project, the overall goal is to design novel molecular MRI methods that are minimally invasive or totally noninvasive and, as such, have a high potential of being translated rapidly into the clinic to be used for tumor assessment and monitoring of treatment. Towards this goal, we exploit so-called chemical exchange saturation transfer (CEST) contrast, which is generated through magnetic labeling of exchangeable protons (such as NH and OH) on either exogenous or endogenous agents, followed by a physical transfer (chemical exchange) of this label to water protons, which allows detection using MRI. To reach our ultimate goal of fast human translation, we will focus our efforts on diamagnetic, biodegradable, non-metallic compounds. Specifically, we will exploit the body's own building blocks, proteins and carbohydrates as CEST biomarkers and develop MRI technology to detect these markers. Tumors are generally characterized by an increased content of small mobile proteins and peptides, rapid glucose metabolism, and increased permeability between blood vessels and extravascular extracellular space. The overall goal therefore is to develop MRI pulse sequence technology and theory for detecting mobile protein content, glucose delivery and metabolism, and tumor perfusion.
Our first aim i s to assess protein content by employing nuclear interactions within these macromolecules (cross-relaxation) combined with the exchange ofthe protein's amide protons to water protons. In the second aim, glucose metabolism and tumor perfusion will be assessed by monitoring the uptake of non-labeled D-glucose using CEST. These technologies are expected to be applicable for most tumor types, but to demonstrate their applicability, we will apply them first to two human breast cancer lines: less aggressive (MCF-7) and highly aggressive and metastatic (MDA-MB-231). This will be done both ex vivo, in perfused cells and, in vivo, on xenografts in mice. As a third aim, we will perform pilot studies in patients to show feasibility of rapid translation.
These aims are expected to result in the availability of molecular MRI technologies in vivo that are suitable for immediate application in humans. Once established, we expect that these methods can be used for tumor detection, imaging tumor perfusion and metabolism, assessing tumor malignancy, and monitoring tumor treatment. This is expected to reduce false-positive detection rates by functioning as an add-on for current high-volume screening approaches and to improve treatment monitoring by MRI.

Public Health Relevance

Breast cancer is the most frequently diagnosed type of cancer in women and the second leading cause of death. Prevention, early diagnosis, and treatment are the three broad challenges for reducing mortality from breast cancer. In this project biocompatible MR technologies will be developed that can help to address the latter two clinical challenges using safe and practically noninvasive approaches.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA103175-07
Application #
8566682
Study Section
Special Emphasis Panel (ZCA1-SRLB-9 (M1))
Project Start
2012-08-01
Project End
2016-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
7
Fiscal Year
2012
Total Cost
$304,861
Indirect Cost
$109,907
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
van Zijl, Peter C M; Lam, Wilfred W; Xu, Jiadi et al. (2017) Magnetization Transfer Contrast and Chemical Exchange Saturation Transfer MRI. Features and analysis of the field-dependent saturation spectrum. Neuroimage :
Penet, Marie-France; Kakkad, Samata; Pathak, Arvind P et al. (2017) Structure and Function of a Prostate Cancer Dissemination-Permissive Extracellular Matrix. Clin Cancer Res 23:2245-2254
Malek, Reem; Gajula, Rajendra P; Williams, Russell D et al. (2017) TWIST1-WDR5-Hottip Regulates Hoxa9 Chromatin to Facilitate Prostate Cancer Metastasis. Cancer Res 77:3181-3193
Krishnamachary, Balaji; Stasinopoulos, Ioannis; Kakkad, Samata et al. (2017) Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts. Oncotarget 8:17981-17994
Xu, Jiadi; Chan, Kannie W Y; Xu, Xiang et al. (2017) On-resonance variable delay multipulse scheme for imaging of fast-exchanging protons and semisolid macromolecules. Magn Reson Med 77:730-739
Chatterjee, Samit; Lesniak, Wojciech G; Miller, Michelle S et al. (2017) Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochem Biophys Res Commun 483:258-263
Miller, Michelle S; Maheshwari, Sweta; McRobb, Fiona M et al. (2017) Identification of allosteric binding sites for PI3K? oncogenic mutant specific inhibitor design. Bioorg Med Chem 25:1481-1486
Chen, Ying; Chatterjee, Samit; Lisok, Ala et al. (2017) A PSMA-targeted theranostic agent for photodynamic therapy. J Photochem Photobiol B 167:111-116
Jin, Jiefu; Krishnamachary, Balaji; Mironchik, Yelena et al. (2016) Phototheranostics of CD44-positive cell populations in triple negative breast cancer. Sci Rep 6:27871
Chan, Kannie W Y; Jiang, Lu; Cheng, Menglin et al. (2016) CEST-MRI detects metabolite levels altered by breast cancer cell aggressiveness and chemotherapy response. NMR Biomed 29:806-16

Showing the most recent 10 out of 210 publications