Specialized Resource 2 (SR2) provides access to all small animal imaging instruments required by the ICMIC@Stanford research community, with emphasis on the four Research Projects and four Developmental Projects. The facility is part of the Stanford School of Medicine "core program", providing access to all the imaging systems available to the research community at the University;the Molecular Imaging Program at Stanford (MIPS;http://mips.stanford.edu/) oversees its operation. SR2 is central to the entire ICMIC@Stanford proposed research and to the overall MIPS. This resource is closely supported by the Imaging Quantitation and Analysis Resource (Specialized Resource 3, or SR3), that provides assistance and support for data analysis acquired on instruments in this facility. The Imaging Facility was initially developed as a part of a Small Animal Imaging Resource Program (SAIRP), and was called the Stanford Center for Innovation in In Vivo Imaging (SCP). A previous SAIRP grant provided the funds to establish the core, and allow it to offer free imaging to all users. Significant funds from the Stanford BioX program and the Departments of Radiology &Pediatrics were also provided to help purchase certain imaging instruments for the facility. However the core transitioned as of September 2005 to a for-fee facility.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA114747-09
Application #
8535624
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
9
Fiscal Year
2013
Total Cost
$92,452
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Lee, Alex G; Nechvatal, Jordan M; Shen, Bin et al. (2016) Striatal dopamine D2/3 receptor regulation by stress inoculation in squirrel monkeys. Neurobiol Stress 3:68-73
Carroll, V N; Truillet, C; Shen, B et al. (2016) [(11)C]Ascorbic and [(11)C]dehydroascorbic acid, an endogenous redox pair for sensing reactive oxygen species using positron emission tomography. Chem Commun (Camb) 52:4888-90
Parashurama, Natesh; Ahn, Byeong-Cheol; Ziv, Keren et al. (2016) Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part I. Reporter Gene Design, Characterization, and Optical in Vivo Imaging of Bone Marrow Stromal Cells after Myocardial Infarction. Radiology 280:815-25
Zhou, Zijian; Song, Jibin; Nie, Liming et al. (2016) Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev 45:6597-6626
Neumann, Kiel D; Qin, Linlin; Vāvere, Amy L et al. (2016) Efficient automated syntheses of high specific activity 6-[18F]fluorodopamine using a diaryliodonium salt precursor. J Labelled Comp Radiopharm 59:30-4
Zanganeh, Saeid; Hutter, Gregor; Spitler, Ryan et al. (2016) Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 11:986-994
Sun, Ziyan; Cheng, Kai; Wu, Fengyu et al. (2016) Robust surface coating for a fast, facile fluorine-18 labeling of iron oxide nanoparticles for PET/MR dual-modality imaging. Nanoscale 8:19644-19653
Zhang, Ruiping; Cheng, Kai; Antaris, Alexander L et al. (2016) Hybrid anisotropic nanostructures for dual-modal cancer imaging and image-guided chemo-thermo therapies. Biomaterials 103:265-77
Van de Sompel, Dominique; Sasportas, Laura S; Jokerst, Jesse V et al. (2016) Comparison of Deconvolution Filters for Photoacoustic Tomography. PLoS One 11:e0152597
Li, Yulin; Deutzmann, Anja; Choi, Peter S et al. (2016) BIM mediates oncogene inactivation-induced apoptosis in multiple transgenic mouse models of acute lymphoblastic leukemia. Oncotarget 7:26926-34

Showing the most recent 10 out of 404 publications