Tamoxifen (TAM) continues to be an important drug for the treatment of estrogen receptor positive (ER+) breast cancer. We have demonstrated that endoxifen, a potent metabolite resulting in part from Cytochrome P450 2D6 (CYP2D6) metabolism, is critical for TAM's antiproliferative effects. Our observation that reductions in CYP2D6 activity were associated with a higher risk of recurrence in TAM-treated breast cancer led us to focus our studies on endoxifen, providing the preliminary data for this proposal. In tumor bearing animals, endoxifen is superior to TAM. Furthermore, our in vitro data indicate that endoxifen can overcome TAM resistance associated with Human Epidermal growth factor Receptor 2 (HER2) expression because endoxifen does not stimulate ER/HER2 cross-talk as TAM does. We presented these data to NCI and they decided to proceed with endoxifen drug development, including production of clinical grade endoxifen hydrochloride and preclinical toxicology/pharmacology for IND submission. Our preliminary data indicate that the following questions should be addressed: 1) What are the metabolic pathways responsible for elimination of endoxifen, and are endoxifen-related toxicities similar to TAM (e.g. uterine stimulation)? 2) Does endoxifen have in vivo anti-tumor activity similar or greater than aromatase inhibitors (Al's) and does endoxifen exhibit anti-tumor activity in cells resistant to TAM or Al's? 3) In humans, can we identify a tolerable endoxifen dose and what is its toxicity profile? and, 4) Is this tolerable dose of endoxifen biologically relevant, as assessed by reductions in proliferation (Ki-67) and growth factor signaling in vivo, as well as clinical responses? To address these questions, we have proposed the following aims.
Aim 1 : to further characterize the pharmacokinetics, metabolism and toxicology of endoxifen;
Aim 2 : to study endoxifen antitumor activity and its effects on cell signaling in a murine xenograft model in comparison to TAM and letrozole and to describe the anti-tumor activity of endoxifen in TAM and letrozole resistant tumors;
and Aim 3 : to conduct a phase I study of endoxifen in humans to determine the maximum tolerated dose (MTD), and describe its toxicity profile. Following this determination, we will enroll additional patients to explore 2 different doses of endoxifen: a) the MTD and b) the endoxifen dose associated with steady state concentrations of 1 pM. At these doses, we will examine the impact of endoxifen on uterine thickness, frequency and severity of hot flashes, and perform paired tumor biopsies to determine endoxifen's effect on proteins important in growth factor signaling and proliferation.

Public Health Relevance

This project is based on observations that endoxifen provides superior in vivo anti-tumor activity compared to TAM and inhibits the growth of HER2 expressing, ER positive breast cancer. In summary, endoxifen could be a superior alternative hormonal therapy for the treatment of both pre- and postmenopausal breast cancer, regardless of HER2 status.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA116201-09
Application #
8757102
Study Section
Special Emphasis Panel (ZCA1-RPRB-7)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
9
Fiscal Year
2014
Total Cost
$341,559
Indirect Cost
$86,221
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
(2015) Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk. Hum Mol Genet 24:285-98
Yee, Douglas (2015) A tale of two receptors: insulin and insulin-like growth factor signaling in cancer. Clin Cancer Res 21:667-9
Ingle, James N; Kalari, Krishna R; Buzdar, Aman U et al. (2015) Estrogens and their precursors in postmenopausal women with early breast cancer receiving anastrozole. Steroids 99:32-8
Whiley, Phillip J; Parsons, Michael T; Leary, Jennifer et al. (2014) Multifactorial likelihood assessment of BRCA1 and BRCA2 missense variants confirms that BRCA1:c.122A>G(p.His41Arg) is a pathogenic mutation. PLoS One 9:e86836
Kiiski, Johanna I; Pelttari, Liisa M; Khan, Sofia et al. (2014) Exome sequencing identifies FANCM as a susceptibility gene for triple-negative breast cancer. Proc Natl Acad Sci U S A 111:15172-7
Osorio, Ana; Milne, Roger L; Kuchenbaecker, Karoline et al. (2014) DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers. PLoS Genet 10:e1004256
D'Assoro, A B; Liu, T; Quatraro, C et al. (2014) The mitotic kinase Aurora--a promotes distant metastases by inducing epithelial-to-mesenchymal transition in ER*(+) breast cancer cells. Oncogene 33:599-610
Agarwal, D; Pineda, S; Michailidou, K et al. (2014) FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium. Br J Cancer 110:1088-100
Abdel-Aal, Abu-Baker M; Lakshminarayanan, Vani; Thompson, Pamela et al. (2014) Immune and anticancer responses elicited by fully synthetic aberrantly glycosylated MUC1 tripartite vaccines modified by a TLR2 or TLR9 agonist. Chembiochem 15:1508-13
Joshi, Poorval M; Sutor, Shari L; Huntoon, Catherine J et al. (2014) Ovarian cancer-associated mutations disable catalytic activity of CDK12, a kinase that promotes homologous recombination repair and resistance to cisplatin and poly(ADP-ribose) polymerase inhibitors. J Biol Chem 289:9247-53

Showing the most recent 10 out of 202 publications