The Mayo Clinic Breast Cancer SPORE will maximize the number of innovative and high-quality projects in the Developmental Research Program. The goal of this program is to support innovative, scientifically meritorious research projects from which findings can be translated into clinically important applications that will impact diagnosis and management of breast cancer in order to decrease the burden and mortality from this disease. This program will: 1) encourage and solicit innovative translational laboratory, population, and clinical study proposals;2) encourage and support interdisciplinary collaboration in translational research in breast cancer;and 3) generate new hypotheses that can be tested in larger-scale research projects or clinical trials that can impact breast cancer. The availability of this support provides a stimulus for creativity in the research community, a vehicle for encouraging the interaction of basic scientists and translational investigators, and an opportunity for expanding the research spectrum of the SPORE by pursuing new leads based on discoveries and/or opportunities that arise. The Developmental Research Program will provide $50,000 for one year ($25,000 from SPORE funds and a matching $25,000 from Mayo Clinic Cancer Center) to each of six projects. There will be the possibility of a second year of support based on demonstration of sufficient progress. A process was established during the initial grant for the Mayo Clinic Breast Cancer SPORE involving a call for applications on an annual basis and a formal peer review utilizing the expertise of the Internal Scientific Advisory Committee and other experienced investigators. Because of the success of this process, it will be continued. Criteria for selection of projects for funding are based upon scientific merit, originality, qualifications of the applicant, and translational potential. It is expected that support of developmental research projects will result in generation of data that will serve as the basis for additional SPORE-sponsored projects or support through peer reviewed external grant support. It is the intent of the SPORE leadership to encourage and help the investigators to use the data generated by these projects to establish preclinical or clinical trials in breast cancer. In addition the SPORE leadership will work with the investigators to secure independent R01-level funding. Two of the four full Projects in this SPORE renewal have a co-leader who was a Developmental Research Program awardee, which indicates that the Developmental Research Program has been successful in this regard during the previous funding period.

Public Health Relevance

The Developmental Research Program supports innovative and scientifically meritorious research projects that have the greatest potential to be translated into clinically important applications for the prevention, diagnosis and treatment of women with breast cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA116201-09
Application #
8757107
Study Section
Special Emphasis Panel (ZCA1-RPRB-7)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
9
Fiscal Year
2014
Total Cost
$272,839
Indirect Cost
$69,902
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Reese, Jordan M; Bruinsma, Elizabeth S; Nelson, Adam W et al. (2018) ER?-mediated induction of cystatins results in suppression of TGF? signaling and inhibition of triple-negative breast cancer metastasis. Proc Natl Acad Sci U S A 115:E9580-E9589
Lilyquist, Jenna; Ruddy, Kathryn J; Vachon, Celine M et al. (2018) Common Genetic Variation and Breast Cancer Risk-Past, Present, and Future. Cancer Epidemiol Biomarkers Prev 27:380-394
Yu, Jia; Qin, Bo; Moyer, Ann M et al. (2018) DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine. J Clin Invest 128:2376-2388
Kannan, Nagarajan; Eaves, Connie J (2018) Macrophages stimulate mammary stem cells. Science 360:1401-1402
Guidugli, Lucia; Shimelis, Hermela; Masica, David L et al. (2018) Assessment of the Clinical Relevance of BRCA2 Missense Variants by Functional and Computational Approaches. Am J Hum Genet 102:233-248
Kurmi, Kiran; Hitosugi, Sadae; Wiese, Elizabeth K et al. (2018) Carnitine Palmitoyltransferase 1A Has a Lysine Succinyltransferase Activity. Cell Rep 22:1365-1373
Goetz, Matthew P; Sangkuhl, Katrin; Guchelaar, Henk-Jan et al. (2018) Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and Tamoxifen Therapy. Clin Pharmacol Ther 103:770-777
Baheti, Saurabh; Tang, Xiaojia; O'Brien, Daniel R et al. (2018) HGT-ID: an efficient and sensitive workflow to detect human-viral insertion sites using next-generation sequencing data. BMC Bioinformatics 19:271
Hart, Steven N; Hoskin, Tanya; Shimelis, Hermela et al. (2018) Comprehensive annotation of BRCA1 and BRCA2 missense variants by functionally validated sequence-based computational prediction models. Genet Med :
Ho, Ming-Fen; Correia, Cristina; Ingle, James N et al. (2018) Ketamine and ketamine metabolites as novel estrogen receptor ligands: Induction of cytochrome P450 and AMPA glutamate receptor gene expression. Biochem Pharmacol 152:279-292

Showing the most recent 10 out of 473 publications