Numerous pre-clinical and clinical studies, including our own, demonstrate that DC-based tumor immunotherapies can induce potent tumor specific immunologic and clinical responses. However, complete clinical responses have been rare, and the improvement of DC-based immunotherapies is the focus of considerable effort. Increasing evidence suggests that tumor induced immunosupression, and the presence or induction of regulatory T-cells (Tregs), may limit the efficacy of anti-tumor immunization strategies. Our hypothesis is that Tregs play a critical role in limiting DC-based immunization against tumors, and that the reduction/removal of Tregs prior to immunotherapy may result in enhanced anti-tumor immunity and improved therapeutic efficacy. The studies we propose here will provide the experimental foundation for this approach and enable a direct test of this hypothesis through clinical trials designed to evaluate combined immunization/Treg depletion approaches for the immunotherapy of patients with advanced stage cutaneous T-cell lymphoma (CTCL). In our preliminary studies, we have developed and evaluated a DC-based immunization strategy for the immunotherapy of patients with CTCL. To construct an autologous tumor vaccine, we have utilized patientderived matured and """"""""polarized"""""""" DCs loaded with autologous circulating tumor cells from leukemic CTCL Patients. Our preliminary data demonstrates that immunization of a patient with end-stage Sezary Syndrome SzS resulted in significant anti-tumor immune responses and a complete clinical response. The studies we propose here are designed to continue the logical progression of the development of this immunization strategy by identifying and obviating immunosuppressive mechanisms in the host that are likely to limit vaccine efficacy. Our preliminary data demonstrate that CTCL patients have elevated levels of Tregs compared to normal controls. In this project we will evaluate and characterize Treg populations in CTCL patients, and will develop strategies to reduce or eliminate Tregs prior to immunization using already approved chemotherapeutic agents. These studies will provide the basis for the in vivo evaluation of the effectiveness of combined immunization and Treg depletion therapies for CTCL, and future analogous approaches for the treatment of human cancers.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA121973-05
Application #
8379334
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
5
Fiscal Year
2012
Total Cost
$201,874
Indirect Cost
$74,767
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Anderson, Alyce J M; Ferris, Laura K; Binion, David G et al. (2018) Cost-Effectiveness of Melanoma Screening in Inflammatory Bowel Disease. Dig Dis Sci 63:2564-2572
Geskin, Larisa J; Damiano, James J; Patrone, Christina C et al. (2018) Three antigen-loading methods in dendritic cell vaccines for metastatic melanoma. Melanoma Res 28:211-221
Geskin, Larisa J; Akilov, Oleg E; Kwon, Soonyou et al. (2018) Therapeutic reduction of cell-mediated immunosuppression in mycosis fungoides and Sézary syndrome. Cancer Immunol Immunother 67:423-434
Davar, Diwakar; Wang, Hong; Chauvin, Joe-Marc et al. (2018) Phase Ib/II Study of Pembrolizumab and Pegylated-Interferon Alfa-2b in Advanced Melanoma. J Clin Oncol :JCO1800632
Anderson, Alyce; Ferris, Laura K; Click, Benjamin et al. (2018) Low Rates of Dermatologic Care and Skin Cancer Screening Among Inflammatory Bowel Disease Patients. Dig Dis Sci 63:2729-2739
Zhang, Yi; Liu, Zuqiang; Hao, Xingxing et al. (2018) Tumor-derived high-mobility group box 1 and thymic stromal lymphopoietin are involved in modulating dendritic cells to activate T regulatory cells in a mouse model. Cancer Immunol Immunother 67:353-366
Lemchak, David; Banerjee, Swati; Digambar, Shaunak S et al. (2018) Therapeutic and prognostic significance of PARP-1 in advanced mycosis fungoides and Sezary syndrome. Exp Dermatol 27:188-190
Matsumoto, Martha; Secrest, Aaron; Anderson, Alyce et al. (2018) Estimating the cost of skin cancer detection by dermatology providers in a large health care system. J Am Acad Dermatol 78:701-709.e1
Ma, Jing; Salamoun, Joseph; Wipf, Peter et al. (2018) Combination of a thioxodihydroquinazolinone with cisplatin eliminates ovarian cancer stem cell-like cells (CSC-LCs) and shows preclinical potential. Oncotarget 9:6042-6054
Santos, Patricia M; Butterfield, Lisa H (2018) Dendritic Cell-Based Cancer Vaccines. J Immunol 200:443-449

Showing the most recent 10 out of 209 publications