Identification of mutations in receptor and non-receptor protein kinases that drive malignant transformation of cancer cells ('driver'mutations) have revolutionized patient care by opening the door to patient-tailored targeted therapies that can improve patient survival. In order to discover new targets for therapy, we sequenced the coding regions of -100 melanomas and identified a large number of somatic mutations and inherited Single Nucleotide Variants (SNVs). One of the most important findings of this effort is the identification ofthe "RAC1 signaling pathway" as a potential new target for melanoma therapy. The analysis revealed a recurrent, UV signature activating mutation in this RHO family of small GTPases, RAC[P29S], in ~5% of melanomas, in addition, the sequencing data revealed mutations in upstream regulators and downstream effectors of RAC1 pathway in a large numbers of melanoma tumors. Functional studies demonstrated an important role in proliferation and migration of not only mutant but also melanoma cells that that donot harbor the P29S mutation. The data suggest that pharmacological inhibition of RACl or its critical effeGtor(s) can be applied for development of new therapies for melanoma patients. The general goals ofthis project are to determine the frequency and prognostic significance of RAC[P29S] mutation in sun exposed melanocytic lesions, and to identify downstream effectors of RACl most likely to be druggable targets in this pathway.
The specific aims are:
Aim 1 : To determine the frequency of RAC1[P29S] mutation and RACl expression levels in a large cohort of melanocytic lesions and correlate with pathological features and tumor progression;
Aim 2 : To elucidate the downstream targets of activated RACl in melanomas.
Aim 3 : To identify small-molecule inhibitors of PAK kinases, the RACl effectors. These studies are likely to provide new opportunities for drug discovery for melanomas and possibly other cancers that can facilitate patienttailored targeted therapy.

Public Health Relevance

There is a need for new patient-tailored therapy for melanoma. Treatment of melanoma patients carrying BRAF[V600E/K] mutations with vemurafenib (PLX4032/RG7204), renamed Zelboraf, yields a very high response rate, but the disease tends to relapse. The novel regulatory pathway discovered by exome sequencing and validated by functional analyses provides the opportunity for additional therapeutic targets for patients who do not benefit from current therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA121974-07
Application #
8557720
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
7
Fiscal Year
2013
Total Cost
$146,452
Indirect Cost
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Brash, Douglas E (2015) UV signature mutations. Photochem Photobiol 91:15-26
Jilaveanu, Lucia B; Parisi, Fabio; Barr, Meaghan L et al. (2015) PLEKHA5 as a Biomarker and Potential Mediator of Melanoma Brain Metastasis. Clin Cancer Res 21:2138-47
Kong, Yong; Krauthammer, Michael; Halaban, Ruth (2014) Rare SF3B1 R625 mutations in cutaneous melanoma. Melanoma Res 24:332-4
Taube, Janis M; Klein, Alison; Brahmer, Julie R et al. (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064-74
Zito, Giovanni; Saotome, Ichiko; Liu, Zongzhi et al. (2014) Spontaneous tumour regression in keratoacanthomas is driven by Wnt/retinoic acid signalling cross-talk. Nat Commun 5:3543
Leonhardt, Ralf M; Abrahimi, Parwiz; Mitchell, Susan M et al. (2014) Three tapasin docking sites in TAP cooperate to facilitate transporter stabilization and heterodimerization. J Immunol 192:2480-94
Sanmamed, Miguel F; Chen, Lieping (2014) Inducible expression of B7-H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J 20:256-61
Ho, Ping-Chih; Meeth, Katrina M; Tsui, Yao-Chen et al. (2014) Immune-based antitumor effects of BRAF inhibitors rely on signaling by CD40L and IFN?. Cancer Res 74:3205-17
Paglino, Justin C; Andres, Wells; van den Pol, Anthony N (2014) Autonomous parvoviruses neither stimulate nor are inhibited by the type I interferon response in human normal or cancer cells. J Virol 88:4932-42
Troche, Jose Ramon; Ferrucci, Leah M; Cartmel, Brenda et al. (2014) Systemic glucocorticoid use and early-onset basal cell carcinoma. Ann Epidemiol 24:625-7

Showing the most recent 10 out of 86 publications