Mutations in the KRAS oncogene occur in 40% of colorectal cancers (CRC), and despite extensive investigation, KRAS mutated CRCs remain resistant to available targeted therapy strategies. Mutant KRAS has been linked to activation of multiple signaling pathways that promote cancer growth and survival including the MEK-ERK, PI3K and NF-?B pathways. Suppressing critical downstream signaling pathways, either alone or in combination, have evolved as promising treatment strategies. This proposal consists of innovative translational laboratory and clinical studies that focus on developing novel strategies to treat KRAS mutant CRCs. These investigations have already begun to yield strategies that will be assessed in clinical trials in this proposal. Our overarching aim is to substantively advance the treatment of KRAS mutant CRCs in this funding period. We have conducted comprehensive signaling studies, genetic screens, and drug screens to identify and validate genes downstream from KRAS whose expression is essential to the growth and survival of KRAS mutant cancers. Our analyses of 1000 cell lines treated with >200 drugs revealed that MEK inhibitors are the most effective class of agents against KRAS mutant CRC cell lines. However, single agent MEK inhibition appears minimally effective in clinical trial;as such we will develop novel combination strategies that utilize MEK inhibitors as a backbone for KRAS mutant CRC. We recently discovered that combining an IGF-IR inhibitor, which has minimal activity as a single-agent, with a MEK inhibitor is highly effective in KRAS mutant CRC cell lines in vitro and in vivo, leading to the development of a soon to open phase l/II clinical trial of this combination. To discover additional combinations, we developed an innovative pooled shRNA screen to identify MEK inhibitor-based combinations for KRAS mutant CRCs. One gene identified in the screen was BCL-XL, and initial studies demonstrate that inactivation of BCL-XL potently synergizes with MEK inhibitors both in vitro and in vivo, which we will further explore in the laboratory and in planned clinical trials. Finally, we will build on our preliminary data demonstrating that Tank Binding Kinase (TBK1) activity is required for KRAS mutant cell survival. We will examine combined TBK1 inhibitors alone and combined with MEK inhibitors. The studies in this proposal will span cell lines, genetically engineered mouse models and clinical trials to identify novel therapeutic strategies for the treatment of KRS mutant CRCs.

Public Health Relevance

While treatment options have expanded for patients in the past decade and median survival is 2 years, metastatic colorectal cancer (CRC) is largely not curable and there are wide range of outcomes experienced by patients with metastatic CRC. It is clear that differences in outcomes are partly due to different molecular make-ups of tumors. Up to 40% of patients with metastatic CRC have a mutation of a particular gene, KRAS. The goal of this project is to understand more about this group of CRC and find new therapies for these patients.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (J1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Ananthakrishnan, Ashwin N; Du, Mengmeng; Berndt, Sonja I et al. (2015) Red meat intake, NAT2, and risk of colorectal cancer: a pooled analysis of 11 studies. Cancer Epidemiol Biomarkers Prev 24:198-205
Song, Mingyang; Gong, Jian; Giovannucci, Edward L et al. (2015) Genetic variants of adiponectin and risk of colorectal cancer. Int J Cancer 137:154-64
Lochhead, Paul; Chan, Andrew T; Nishihara, Reiko et al. (2015) Etiologic field effect: reappraisal of the field effect concept in cancer predisposition and progression. Mod Pathol 28:14-29
Inamura, Kentaro; Yamauchi, Mai; Nishihara, Reiko et al. (2015) Prognostic significance and molecular features of signet-ring cell and mucinous components in colorectal carcinoma. Ann Surg Oncol 22:1226-35
Serrano, César; Wang, Yuexiang; Mariño-Enríquez, Adrián et al. (2015) KRAS and KIT Gatekeeper Mutations Confer Polyclonal Primary Imatinib Resistance in GI Stromal Tumors: Relevance of Concomitant Phosphatidylinositol 3-Kinase/AKT Dysregulation. J Clin Oncol 33:e93-6
Rosenthal, Michael H; Kim, Kyung Won; Fuchs, Charles S et al. (2015) CT predictors of overall survival at initial diagnosis in patients with stage IV colorectal cancer. Abdom Imaging 40:1170-6
Arteaga, Carlos L; Engelman, Jeffrey A (2014) ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 25:282-303
Wu, Chen; Kraft, Peter; Stolzenberg-Solomon, Rachael et al. (2014) Genome-wide association study of survival in patients with pancreatic adenocarcinoma. Gut 63:152-60
Ma, Tianle; Jang, Eun Jeong; Zukerberg, Lawrence R et al. (2014) Recurrences are common after endoscopic ampullectomy for adenoma in the familial adenomatous polyposis (FAP) syndrome. Surg Endosc 28:2349-56
Blaszkowsky, L S; Ryan, D P; Szymonifka, J et al. (2014) Phase I/II study of neoadjuvant bevacizumab, erlotinib and 5-fluorouracil with concurrent external beam radiation therapy in locally advanced rectal cancer. Ann Oncol 25:121-6

Showing the most recent 10 out of 259 publications