This proposal seeks effective combination therapies that maximize GIST response to KIT/PDGFRA inhibition by concurrently targeting the biologically key MEK/MAPK pathway. Most GISTs express mutant, constitutively activated forms of the KIT or PDGFRA, and we have shown that these formerly untreatable cancers can be palliated in 80% of patients by oral single-agent therapy with imatinib mesylate. However,patients responding to imatinib have persistent measurable disease and generally develop resistance within two years of starting treatment. Therefore, more effective and broader-spectrum therapies are urgently needed. Notably, our preliminary studies show that KIT/PDGFRA imatinib resistance mechanisms vary from patient to patient, and also between metastatic lesions in a given patient, but uniformly rely upon MEK/MAPK signaling to support cell proliferation.
In Aim 1, by studying MEK/MAPK signaling and response mechanisms, we will develop clinically-relevant biomarkers and - most importantly - we will identify alternate MEK-dependent therapeutic targets which might have greater specificity, in GIST, compared to MEK.
In Aim 2. we will characterize mechanisms of MEKi resistance, since such studies are likely to identify biologically essential regulatory nodes in MEK/MAPK-pathways, which - like those found in Aim 1 - will be candidates as biomakers and therapeutic targets in GIST clinical trials. The collective studies in Aims 1-2, by revealing the scope of MEK/MAPK signaling in GIST, will provide the understanding needed to design more effective and less toxic clinical trials.
In Aim 3 we evaluate combination therapies with imatinib and MEKi, as a strategy to inhibit downstream signals from the varied gain-of-function KIT mutations each imatinib-resistant patient, while maintaining imatinib inhibition of nonprogressing GIST subclones. This will be accomplished through a phase l/ll clinical trial of the MEK inhibitor, MEK162, combined with imatinib, in patients showing progression of metastatic GIST on imatinib or sunitinib. Through these studies, we will translate the basic science proposed in this SPORE through to clinical application.

Public Health Relevance

We expect this GIST research will enable clinical progress by developing therapies that are not stymied by the diversity of KIT/PDGFRA inhibitor resistance mechanisms. The proposed studies seek to maximize response by targeting KIT/PDGFRA oncogenic signals as they pass through the MEK/MAPK conduit, and such strategies are also relevant in other kinase-driven human cancers.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (J1))
Program Officer
Agarwal, Rajeev K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Russo, Mariangela; Siravegna, Giulia; Blaszkowsky, Lawrence S et al. (2016) Tumor Heterogeneity and Lesion-Specific Response to Targeted Therapy in Colorectal Cancer. Cancer Discov 6:147-53
Kugel, Sita; Sebastián, Carlos; Fitamant, Julien et al. (2016) SIRT6 Suppresses Pancreatic Cancer through Control of Lin28b. Cell 165:1401-15
Kim, Sun A; Inamura, Kentaro; Yamauchi, Mai et al. (2016) Loss of CDH1 (E-cadherin) expression is associated with infiltrative tumour growth and lymph node metastasis. Br J Cancer 114:199-206
Delaney, Susan K; Hultner, Michael L; Jacob, Howard J et al. (2016) Toward clinical genomics in everyday medicine: perspectives and recommendations. Expert Rev Mol Diagn 16:521-32
Mima, Kosuke; Cao, Yin; Chan, Andrew T et al. (2016) Fusobacterium nucleatum in Colorectal Carcinoma Tissue According to Tumor Location. Clin Transl Gastroenterol 7:e200
Whitley, Melodi Javid; Cardona, Diana M; Lazarides, Alexander L et al. (2016) A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci Transl Med 8:320ra4
Ahronian, Leanne G; Corcoran, Ryan B (2016) Effective MAPK Inhibition is critical for therapeutic responses in colorectal cancer with BRAF mutations. Mol Cell Oncol 3:e1048405
Saha, Supriya K; Zhu, Andrew X; Fuchs, Charles S et al. (2016) Forty-Year Trends in Cholangiocarcinoma Incidence in the U.S.: Intrahepatic Disease on the Rise. Oncologist 21:594-9
Ou, Wen-Bin; Lu, Minmin; Eilers, Grant et al. (2016) Co-targeting of FAK and MDM2 triggers additive anti-proliferative effects in mesothelioma via a coordinated reactivation of p53. Br J Cancer 115:1253-1263
Zeng, Chenjie; Matsuda, Koichi; Jia, Wei-Hua et al. (2016) Identification of Susceptibility Loci and Genes for Colorectal Cancer Risk. Gastroenterology 150:1633-45

Showing the most recent 10 out of 481 publications