The Imaging Core (Core A) of the Emory Molecular and Translational Imaging Research Center will provide centralized access, quality control, expertise and consultation services related to state-of-theart imaging with positron emission tomography (PET), magnetic resonance (MR) techniques, and optical imaging methods. In this regard, the Core is highly integrative, being utilized by all four Research Projects, as a life laboratory for the applied portion of the Career Development Program, and by all Year 1 Pilot Projects. Core A will also have vital collaborative interactions with each of the other 3 core resources. Substantial physical and instrumentation resources available to EMTIC investigators include high resolution human PET (Project #1;Pilot #4), microPET (Project #2), high-field animal and human MR systems (Project #3, Pilot #3), computed tomography (Pilot #5), and optical imaging systems (Projects #1, 3, 5, Pilot #2). Core A will provide the infrastructure to ensure coordinated access, support and acceleration of methodological developments needed to optimize and translate cellular and molecular imaging techniques to clinical settings. The mission and objectives of Core A includes supporting both the day-to-day needs of EMTIC investigators as well as fostering the development of new methods and imaging techniques including refinement of magnetic nanoparticle tracer technology and implementation and protocol design for a prototype combined MR/PET device, for which Emory will be one of two initial North American installation sites.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA128301-05
Application #
8382627
Study Section
Special Emphasis Panel (ZCA1-SRRB-9)
Project Start
Project End
2014-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
5
Fiscal Year
2012
Total Cost
$145,484
Indirect Cost
$51,223
Name
Emory University
Department
Type
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Orza, Anamaria; Yang, Yi; Feng, Ting et al. (2016) A nanocomposite of Au-AgI core/shell dimer as a dual-modality contrast agent for x-ray computed tomography and photoacoustic imaging. Med Phys 43:589
Tian, Zhiqiang; Liu, Lizhi; Zhang, Zhenfeng et al. (2016) Superpixel-Based Segmentation for 3D Prostate MR Images. IEEE Trans Med Imaging 35:791-801
Dance, David R; Sechopoulos, Ioannis (2016) Dosimetry in x-ray-based breast imaging. Phys Med Biol 61:R271-R304
Schuster, David M; Nanni, Cristina; Fanti, Stefano (2016) PET Tracers Beyond FDG in Prostate Cancer. Semin Nucl Med 46:507-521
Odewole, Oluwaseun A; Oyenuga, Oyeladun A; Tade, Funmilayo et al. (2015) Reproducibility and reliability of anti-3-[¹⁸F]FACBC uptake measurements in background structures and malignant lesions on follow-up PET-CT in prostate carcinoma: an exploratory analysis. Mol Imaging Biol 17:277-83
Lu, Guolan; Wang, Dongsheng; Qin, Xulei et al. (2015) Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery. J Biomed Opt 20:126012
Pike, Robert; Sechopoulos, Ioannis; Fei, Baowei (2015) A minimum spanning forest based classification method for dedicated breast CT images. Med Phys 42:6190-202
Qin, Xulei; Fei, Baowei (2015) DTI template-based estimation of cardiac fiber orientations from 3D ultrasound. Med Phys 42:2915-24
Kaluzova, Milota; Bouras, Alexandros; Machaidze, Revaz et al. (2015) Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget 6:8788-806
Wang, Dongsheng; Fei, Baowei; Halig, Luma V et al. (2014) Targeted iron-oxide nanoparticle for photodynamic therapy and imaging of head and neck cancer. ACS Nano 8:6620-32

Showing the most recent 10 out of 74 publications