A strategy that shows great promise for treating pancreatic cancer is to combine cytotoxic treatments with agents that abrogate the already-tenuous checkpoint functionality exhibited by most tumor cells. Drugs that target the checkpoint protein Chk1 (such as AZD7762, currently in Phase-I clinical trials) are of particular interest in the context of pancreatic cancer because Chkl has also been shown to have a critical role in mediating the activity of Rad51, a key protein in homologous recombination repair (HRR) that is associated with resistance to DNA damaging treatments, and is upregulated in human pancreatic tumors. The long term goal of our work Is to improve the outcome of patients with pancreatic cancer by rationally adding Chk1 inhibitors to the combination of Gem and radiation. Our preliminary data demonstrate that both chemo- and radiosensitization by AZD7762 vary substantially among human pancreatic tumor cell lines, and that under conditions of sensitization, AZD7762 affects several endpoints related to HRR. We also found that endpoints related to G2/M checkpoint abrogation reflected sensitization in some cases but not in others.
Specific Aim 1 is to determine the mechanisms by which AZD7762 treatment affects HRR activity and sensitivity to Gem and IR in pancreatic cancer cell lines, in vitro. This work will allow us to identify mechanism-based molecular endpoints to be interrogated in future clinical studies, and to identify new targets for therapeutic intervention, related to HRR activity. Although the mechanistic basis for therapeutic effects of Chkl inhibitors is not yet completely understood, our data in vitro and in vivo already provide strong motivation for conducting an initial clinical trial.
Specific Aim 2 is to use xenograft models to establish the basis for conducting a clinical trial combining AZD7762 with Gem and radiation. The results of Aim 2 will help to define the design of our subsequent clinical trial.
Specific Aim 3 is to carry out a clinical trial using AZD7762 in combination with Gem and radiation in patients with resected pancreatic cancer. We will use a combination of Gem and radiation followed by Gem alone, combined with dose-escalating AZD7762, based on the schedule suggested in Aim 2. We hypothesize that the MTD for AZD7762 will be similar to that detennined in the current phase I trials using Gem alone (i.e. that adding conformal radiation will have a minimal impact on the MTD of AZD7762 in combination with Gem). Also, we hypothesize that AZD7762 will inhibit Chkl activity in surrogate normal tissues when administered at the MTD, and, possibly, at lower doses.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Ann Arbor
United States
Zip Code
Dong, Liang; Zou, Hechang; Yuan, Chong et al. (2016) Different Fatty Acids Compete with Arachidonic Acid for Binding to the Allosteric or Catalytic Subunits of Cyclooxygenases to Regulate Prostanoid Synthesis. J Biol Chem 291:4069-78
Satagopan, Jaya M; Sen, Ananda; Zhou, Qin et al. (2016) Bayes and empirical Bayes methods for reduced rank regression models in matched case-control studies. Biometrics 72:584-95
Gifford, Gail B; Demitrack, Elise S; Keeley, Theresa M et al. (2016) Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homoeostasis. Gut :
Umoh, Faith I; Kato, Ikuko; Ren, Jianwei et al. (2016) Markers of systemic exposures to products of intestinal bacteria in a dietary intervention study. Eur J Nutr 55:793-8
Parsels, Leslie A; Tanska, Daria M; Parsels, Joshua D et al. (2016) Dissociation of gemcitabine chemosensitization by CHK1 inhibition from cell cycle checkpoint abrogation and aberrant mitotic entry. Cell Cycle 15:730-9
Kirkconnell, Killeen S; Paulsen, Michelle T; Magnuson, Brian et al. (2016) Capturing the dynamic nascent transcriptome during acute cellular responses: The serum response. Biol Open 5:837-47
Ziemke, Elizabeth K; Dosch, Joseph S; Maust, Joel D et al. (2016) Sensitivity of KRAS-Mutant Colorectal Cancers to Combination Therapy That Cotargets MEK and CDK4/6. Clin Cancer Res 22:405-14
Sidahmed, ElKhansa; Sen, Ananda; Ren, Jianwei et al. (2016) Colonic Saturated Fatty Acid Concentrations and Expression of COX-1, but not Diet, Predict Prostaglandin E2 in Normal Human Colon Tissue. Nutr Cancer 68:1192-201
Dong, Liang; Zou, Hechang; Yuan, Chong et al. (2016) Interactions of 2-O-arachidonylglycerol ether and ibuprofen with the allosteric and catalytic subunits of human COX-2. J Lipid Res 57:1043-50
Zhang, Qiang; Zhang, Yaqing; Parsels, Joshua D et al. (2016) Fbxw7 Deletion Accelerates Kras(G12D)-Driven Pancreatic Tumorigenesis via Yap Accumulation. Neoplasia 18:666-673

Showing the most recent 10 out of 83 publications