instmctions): The purpose of the proposed Mayo Clinic Ovarian SPORE is to sfimulate and facilitate rigorous translational research in ovarian cancer?work that will take new basic and population science discoveries and convert them to improved intervenfions for women with ovarian cancer. Three of the four projects in this SPORE grant rely heavily on this proposed Animal Models Core for the evaluafion of novel interventions (imaging and therapeufics) and for refining experimental approaches and delivery regimens in ovarian cancer-bearing mice. To ensure that all the animal experimentafion can be performed in an expert and efficient manner?, and that SPORE investigators use standarized models for their varying therapeutic strategies?the Animal Core will serve as a central resource and, in collaboration with the laboratory personnel from each project, will perform all the animal experimentafion described in the projects. Specifically, the Animal Core will: (1) ensure the efficient planning, piurchase and ufilizafion of experimental mice, (2) provide the necessary facilifies and animal handling expertise for the projects;(3) provide xenograft and immunocompetent mouse models for testing of novel agents and therapeutic strategies and (4) provide veterinary expertise and access to non-invasive imaging strategies to monitor tumor burden. Importantly, the Animal Models Core will assure the following: (1) Consistency in animal modeling. Modeling through this core will maintain consistency in methods and outcomes, making it easier to reproduce our findings and easier to combine approaches from other labs;(2) Provision of strong animal modeling expertise to all projects. While all project teams have had experience with animal models, some have less than others. By providing a core, we can ensure that all SPORE members will have access to the highest level of skills available;(3) Opfimal interaction across projects with regard to modeling strategies. The core will bring together the investigators from each project and provide an outstanding avenue for new collaborations and the strengthening of existing collaborafions; (4) Efficiency in animal use and care. This core will result in an organized approach to animal use, minimizing waste and the numbers of animals used and eliminafing redundancy in personnel.

Public Health Relevance

The Animal Models core will develop and maintain murine models of ovarian cancer. These models are necessary for understanding the complex interacfions of ovarian cancer with normal healthy tissues and the immune system. Further, the models are needed for the development of novel therapeutics that require animal tesfing prior to human clinical use.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Karami, Sara; Han, Younghun; Pande, Mala et al. (2016) Telomere structure and maintenance gene variants and risk of five cancer types. Int J Cancer 139:2655-2670
Clyde, Merlise A; Palmieri Weber, Rachel; Iversen, Edwin S et al. (2016) Risk Prediction for Epithelial Ovarian Cancer in 11 United States-Based Case-Control Studies: Incorporation of Epidemiologic Risk Factors and 17 Confirmed Genetic Loci. Am J Epidemiol 184:579-589
Radecki Breitkopf, Carmen; Ridgeway, Jennifer L; Asiedu, Gladys B et al. (2016) Ovarian cancer patients' and their family members' perspectives on novel vaccine and virotherapy trials. Clin Trials 13:660-664
Ezewuiro, Obiageli; Grushko, Tatyana A; Kocherginsky, Masha et al. (2016) Association of Metformin Use with Outcomes in Advanced Endometrial Cancer Treated with Chemotherapy. PLoS One 11:e0147145
Li, Zheng; Block, Matthew S; Vierkant, Robert A et al. (2016) The inflammatory microenvironment in epithelial ovarian cancer: a role for TLR4 and MyD88 and related proteins. Tumour Biol 37:13279-13286
Pharoah, Paul D P; Song, Honglin; Dicks, Ed et al. (2016) PPM1D Mosaic Truncating Variants in Ovarian Cancer Cases May Be Treatment-Related Somatic Mutations. J Natl Cancer Inst 108:
(2016) Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus. Nat Commun 7:12675
Karyampudi, Lavakumar; Lamichhane, Purushottam; Krempski, James et al. (2016) PD-1 Blunts the Function of Ovarian Tumor-Infiltrating Dendritic Cells by Inactivating NF-κB. Cancer Res 76:239-50
French, Juliet D; Johnatty, Sharon E; Lu, Yi et al. (2016) Germline polymorphisms in an enhancer of PSIP1 are associated with progression-free survival in epithelial ovarian cancer. Oncotarget 7:6353-68
Harris, Faye R; Kovtun, Irina V; Smadbeck, James et al. (2016) Quantification of Somatic Chromosomal Rearrangements in Circulating Cell-Free DNA from Ovarian Cancers. Sci Rep 6:29831

Showing the most recent 10 out of 225 publications