Extensive studies have defined GLIPRI (glioma pathogenesis-related protein) as a secreted, cytostatic/pro- apoptotic tumor suppressor protein that is down-regulated during prostate cancer progression through epigenetic mechanisms. Mechanistic studies have shown that GLIPRI manifests tumor suppressor functions through coordinated cell type specific activities, including direct, tumor cell selective, pro-apoptotic activities mediated through reactive oxygen species (R0S)-c-jun-NH2 kinase (JNK) signaling. Recently we showed that GLIPRI expression leads to down-regulation of specificity protein 1 (Spl). Additional analysis showed that GLIPR1 expression suppressed c-myc through transcriptional repression that was dependent on Spl responsive GC/GT sites in the c-myc promoter and resulted in down-regulation of additional Spl target genes including copper/zinc superoxide dismutase (CuZnSOD/SODI) and manganese superoxide dismutase (MnS0D/S0D2). These data are in agreement with previous findings that Spl directly stimulates expression of multiple anti-oxidant proteins including CuZnSOD, MnSOD, and extracellular superoxide dismutase (ECSOD/SOD3). Western blotting analysis of c-myc targets showed that GLIPRI overexpression resulted in significant suppression of key cell cycle regulatory proteins and also y-Qlutamyl-cysteine synthetase, which catalyzes the first rate-limiting step in the synthesis of glutathione [1]. Overall, GLIPRI suppression of Spl activities represents a molecular switch that debilitates the anti-oxidant mechanisms/pathways that prevent cancer cells from ROS mediated """"""""self-destruction"""""""" and inhibits c-myc- mediated cancer cell proliferation. In preclinical studies we have found that recombinant GLIPRI protein treatment results in tumor cell selective growth arrest and/or apoptotic cell death in multiple prostate cancer cell lines in vitro. Further preclinical studies using VCaP and/or PC-3 xenograft models demonstrated that recombinant GLIPRI protein suppressed tumor growth and increased tumor cell apoptosis when administered intratumorally or intraperitoneally. In addition, effects on stromal cells effects were observed in treated tumors including significant suppression of angiogenesis and macrophage infiltration. Our first step in developing GLIPRI protein therapy for prostate cancer is to test in situ delivery of a modified GLIPRI protein (GLIPR1-ATM). This Phase lb clinical trial will accomplish two important goals: (1) Establish the safety of this therapeutic protein in a clinical setting (intraprostatic treatment prior to radical prostatectomy);(2) Establish proof of principle for systemic use of GLIPRI-ATM.

Public Health Relevance

This project will further analyze the mechanism of action of a novel cancer protein therapeutic, GLIPRI-ATM, and use this information to develop predictive biomarkers for local and systemic response. Further clinical studies that involve intraprostatic injection of GLIPRI-ATM will test its toxicity and efficacy through extensive tissue analysis. GLIPRI-ATM has the potential for local and systemic use for prostate cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
United States
Zip Code
Luo, Yong; Azad, Abul Kalam; Karanika, Styliani et al. (2017) Enzalutamide and CXCR7 inhibitor Combination Treatment Suppresses Cell Growth and Angiogenic Signaling in Castration-Resistant Prostate Cancer Models. Int J Cancer :
Lin, Song-Chang; Lee, Yu-Chen; Yu, Guoyu et al. (2017) Endothelial-to-Osteoblast Conversion Generates Osteoblastic Metastasis of Prostate Cancer. Dev Cell 41:467-480.e3
Gao, Jianjun; Ward, John F; Pettaway, Curtis A et al. (2017) VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med 23:551-555
Yu, Kai-Jie; Li, Jeffrey K; Lee, Yu-Chen et al. (2017) Cabozantinib-induced osteoblast secretome promotes survival and migration of metastatic prostate cancer cells in bone. Oncotarget 8:74987-75006
Tu, Huakang; Gu, Jian; Meng, Qing H et al. (2017) Low serum testosterone is associated with tumor aggressiveness and poor prognosis in prostate cancer. Oncol Lett 13:1949-1957
Gökce, Mehmet I; Wang, Xuemei; Frost, Jacqueline et al. (2017) Informed decision making before prostate-specific antigen screening: Initial results using the American Cancer Society (ACS) Decision Aid (DA) among medically underserved men. Cancer 123:583-591
Karanika, Styliani; Karantanos, Theodoros; Li, Likun et al. (2017) Targeting DNA Damage Response in Prostate Cancer by Inhibiting Androgen Receptor-CDC6-ATR-Chk1 Signaling. Cell Rep 18:1970-1981
Saha, Achinto; Blando, Jorge; Fernandez, Irina et al. (2016) Linneg Sca-1high CD49fhigh prostate cancer cells derived from the Hi-Myc mouse model are tumor-initiating cells with basal-epithelial characteristics and differentiation potential in vitro and in vivo. Oncotarget 7:25194-207
Fong, Eliza L S; Wan, Xinhai; Yang, Jun et al. (2016) A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Biomaterials 77:164-72
Subudhi, Sumit K; Aparicio, Ana; Gao, Jianjun et al. (2016) Clonal expansion of CD8 T cells in the systemic circulation precedes development of ipilimumab-induced toxicities. Proc Natl Acad Sci U S A 113:11919-11924

Showing the most recent 10 out of 198 publications