The Developmental Research Program (DRP) will provide seed funding to meritorious translational projects that have the potential for significantly advancing our ability to prevent, detect, diagnose, stage, or treat multiple myeloma. Project proposals will be selected in a rigorous, peer-reviewed, two-tiered process, starting with a once-yeariy request for applications that will be communicated to investigators at all three participafing institutions. In this first round, proposals will be limited to four pages, and required to assume the format of an NIH R01 applicafion, incorporafing specific aims, background and significance, preliminary studies, and research design and methods. These proposals will be reviewed by the DRP Director and Co- Director to identify those that meet the pre-specified eligibility criteria, and these will be invited to submit a full, ten-page applicafion, using the same format with the inclusion of a budget and justification. During this second fier, proposals will be reviewed by the DRP Review Committee, which will include Leaders and/or Co-Leaders of each of the SPORE Projects, Directors and/or Co-Directors of SPORE Cores, and at least four members of the External Scientific Advisory Board, and four members of the Internal Scientific Advisory Board. Up to four projects each year will be selected for funding and supported for one year, during which progress reports will be monitored every six months. Renewal of support may be possible for a second year, but will require the project to successfully compete with the next year's pool of proposals. Through this mechanism, the specific aims of the DRP are: 1. To support novel, highly translational research projects that take maximum advantage of the new research opportunities afforded by the SPORE;2. To build and foster new collaborafions among scientists within SPOREs, or with scienfists outside the SPORE mechanism;and 3. To provide.scientific flexibility to the SPORE that will allow promofion of promising DRP projects to full Project status. Prior to the submission of this applicafion, the standard operating procedure outlined above was successfully tested, and led to the selection of several promising proposals to serve as examples of the types of projects that would be considered for support. Notably, these come from a diverse group of invesfigators interested in a variety of approaches with important translational implicafions, and support the future strength of the DRP.

Public Health Relevance

The DRP will be a source of seed funding to support innovative, highly translafional approaches with a great potential for advancing our future ability to prevent, detect, diagnose, stage, or treat multiple myeloma.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
United States
Zip Code
Xia, Yi; Jeffrey Medeiros, L; Young, Ken H (2016) Signaling pathway and dysregulation of PD1 and its ligands in lymphoid malignancies. Biochim Biophys Acta 1865:58-71
Xu-Monette, Zijun Y; Zhang, Shanxiang; Li, Xin et al. (2016) p63 expression confers significantly better survival outcomes in high-risk diffuse large B-cell lymphoma and demonstrates p53-like and p53-independent tumor suppressor function. Aging (Albany NY) 8:345-65
Kanagal-Shamanna, Rashmi; Xu-Monette, Zijun Y; Miranda, Roberto N et al. (2016) Crystal-storing histiocytosis: a clinicopathological study of 13 cases. Histopathology 68:482-91
Cao, Xin; Medeiros, L Jeffrey; Xia, Yi et al. (2016) Clinicopathologic features and outcomes of lymphoplasmacytic lymphoma patients with monoclonal IgG or IgA paraprotein expression. Leuk Lymphoma 57:1104-13
Zhang, Xing-Ding; Baladandayuthapani, Veerabhadran; Lin, Heather et al. (2016) Tight Junction Protein 1 Modulates Proteasome Capacity and Proteasome Inhibitor Sensitivity in Multiple Myeloma via EGFR/JAK1/STAT3 Signaling. Cancer Cell 29:639-52
Zhou, Liang; Chen, Shuang; Zhang, Yu et al. (2016) The NAE inhibitor pevonedistat interacts with the HDAC inhibitor belinostat to target AML cells by disrupting the DDR. Blood 127:2219-30
Ye, Qing; Xu-Monette, Zijun Y; Tzankov, Alexandar et al. (2016) Prognostic impact of concurrent MYC and BCL6 rearrangements and expression in de novo diffuse large B-cell lymphoma. Oncotarget 7:2401-16
Tang, Jinle; Li, Jialu; Zhu, Xuejun et al. (2016) Novel CD7-specific nanobody-based immunotoxins potently enhanced apoptosis of CD7-positive malignant cells. Oncotarget 7:34070-83
Shah, Jatin J; Jakubowiak, Andrzej J; O'Connor, Owen A et al. (2016) Phase I Study of the Novel Investigational NEDD8-Activating Enzyme Inhibitor Pevonedistat (MLN4924) in Patients with Relapsed/Refractory Multiple Myeloma or Lymphoma. Clin Cancer Res 22:34-43
de Winde, Charlotte M; Veenbergen, Sharon; Young, Ken H et al. (2016) Tetraspanin CD37 protects against the development of B cell lymphoma. J Clin Invest 126:653-66

Showing the most recent 10 out of 169 publications